Abstract:
A lithographic printing plate precursor includes a support, an undercoat layer and an image-recording layer in this order, in which by exposing imagewise the image-recording layer with laser and then supplying at least any of printing ink and dampening water on a cylinder of a printing machine, an unexposed area of the image-recording layer can be removed, and the image-recording layer contains (A) a polymerization initiator, (B) a polymerizable compound and (C) a binder polymer, and the undercoat layer contains the copolymer (D1) as defined herein and the copolymer (D2) as defined herein and a weight of the copolymer (D1) is from 5 to 95% based on a total weight of the copolymers (D1) and (D2).
Abstract:
A lithographic printing plate precursor includes: a support; and an image-recording layer containing (A) a polymerization initiator, (B) a sensitizing dye and (C) a polymerizable compound, and the image-recording layer or an undercoat layer which is optionally provided between the support and the image-recording layer comprises (D) a polymer compound comprising (a1) a repeating unit having a side chain having a structure represented by the following formula (a1-1) and (a2) a repeating unit having a side chain having at least one structure of the formulae (a2-1), (a2-2), (a2-3), (a2-4), (a2-5) and (a2-6) as defined herein.
Abstract:
Provided are photosensitive resin compositions having a wide exposure latitude, a precursor composition for providing such a photosensitive resin composition, a method for producing a precursor composition, a cured film, a method for producing a cured film; and a semiconductor device. The precursor composition is a precursor composition containing at least one kind of heterocycle-containing polymer precursor, in which the heterocycle-containing polymer precursor is selected from a polyimide precursor and a polybenzoxazole precursor; and the dispersity which is a weight-average molecular weight/a number-average molecular weight of the heterocycle-containing polymer precursor is 2.5 or more.
Abstract:
Provided are a kit and a laminate which are capable of suppressing residues derived from a temporary adhesive in manufacture of a semiconductor. The kit for manufacturing a semiconductor device includes a composition which contains a solvent A; a composition which contains a solvent B; and a composition which contains a solvent C, in which the kit is used when a temporary adhesive layer is formed on a first substrate using a temporary adhesive composition containing a temporary adhesive and the solvent A, at least some of an excessive amount of the temporary adhesive on the first substrate is washed using the composition containing the solvent B, a laminate is manufactured by bonding the first substrate and a second substrate through the temporary adhesive layer, one of the first substrate and the second substrate is peeled off from the laminate at a temperature of lower than 40° C., and then the temporary adhesive remaining on at least one of the first substrate or the second substrate is washed using the composition containing the solvent C, and the solvent A, the solvent B, and the solvent C respectively satisfy a predetermined vapor pressure and a predetermined saturated solubility.
Abstract:
A temporary bonding laminate for use in the manufacture of semiconductor devices and a method for manufacturing semiconductor devices are provided. A member to be processed (a semiconductor wafer or the like) can be temporarily supported securely and readily during a mechanical or chemical process of the member, and then the processed member can be readily released from the temporary support without damaging the processed member even after a high temperature process. The laminate includes: (A) a release layer and (B) an adhesive layer. The release layer contains (a1) a compound being liquid at 25° C. and having a 5% mass reduction temperature of 250° C. or more when measured in a nitrogen gas stream under heating conditions of a constant heating rate of 20° C./min; and (a2) a binder having a 5% mass reduction temperature of 250° C. or more when measured under the same conditions.
Abstract:
As a temporary bonding layer for production of semiconductor device, which not only can temporarily support a member to be processed (for example, a semiconductor wafer) firmly and easily when the member to be processed is subjected to a mechanical or chemical processing, but also can easily release the temporary support for the member processed without imparting damage to the member processed, a stack and a production method of semiconductor device, a temporary bonding layer for production of semiconductor device including (A) a release layer and (B) an adhesive layer, wherein the release layer is a layer containing a hydrocarbon resin is provided.
Abstract:
The invention is directed to a temporary adhesive for production of semiconductor device, containing (A) a polymer compound having an acid group, (B) a diluent, and (C) a solvent, an adhesive support including a substrate and an adhesive layer formed from the temporary adhesive for production of semiconductor device, and a production method of semiconductor device having a member processed including: adhering a first surface of a member to be processed to a substrate through an adhesive layer formed from the temporary adhesive for production of semiconductor device as claimed; conducting a mechanical or chemical processing on a second surface which is different from the first surface of the member to be processed to obtain the member processed; and releasing the first surface of the member processed from the adhesive layer.
Abstract:
A photosensitive resin composition is also provided that includes a polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor; a photo-radical polymerization initiator; and a solvent, in which an acid value of an acid group contained in the polymer precursor and having a neutralization point in a pH range of 7.0 to 12.0 is in a range of 2.5 to 34.0 mgKOH/g, and either the polymer precursor contains a radically polymerizable group or the photosensitive resin composition includes a radically polymerizable compound other than the polymer precursor.
Abstract:
Provided is a resin capable of yielding a cured film with less warp and good uniformity, and of yielding a cured film (pattern) with less scum; a composition using the resin; a cured film; and a method for manufacturing a cured film and a semiconductor device. The resin is selected from polyimide precursor, polyimide, polybenzoxazole precursor, and, polybenzoxazole, and has a polymerizable group, and has a total content of a component with a molecular weight of 1,000 or smaller of 0.005 to 1.0% by mass.
Abstract:
There is provided a laminate body which is capable of forming an excellent pattern on an organic semiconductor.A laminate body includes at least a water-soluble resin film and a resist film formed of a chemically amplified photosensitive resin composition on a surface of an organic semiconductor film in this order, in which the chemically amplified photosensitive resin composition contains a photoacid generator which is decomposed in an amount of 80% by mole or greater when exposed to light under the condition of 100 mJ/cm2 or greater at a wavelength of 365 nm, a mask pattern is formed by an exposed portion being hardly soluble in a developer containing an organic solvent, and the formed mask pattern is used as an etching mask.
Abstract translation:提供能够在有机半导体上形成优异图案的层叠体。 层叠体依次包含至少一种水溶性树脂膜和由化学放大型感光性树脂组合物形成的抗蚀剂膜,其中化学增幅感光性树脂组合物含有光致酸产生剂,该光致酸性发生剂为 当在365nm的波长为100mJ / cm 2以上的条件下曝光时,以80摩尔%以上的量分解,掩模图案由几乎不溶于含有有机物的显影剂的露出部分形成 溶剂,并且将形成的掩模图案用作蚀刻掩模。