Abstract:
In the plasma reaction vessel (1) of the invention, two or more laminate-structures (6) having ceramic formed bodies (3, 4) in which a plasma generating electrode (2) capable of generating plasma is formed in two-tape-form, and an electrically continuous film-like electrically conductive electrode (5) held between the two ceramic formed bodies (3, 4) are formed in such a manner as to form a plasma generating space (7) containing mutual laminate planes therein. Of the electrically conductive electrodes (5), adjacent ones are capable of having electric discharge produced therebetween so as to generate the plasma in the plasma generating space (7) and of generating uniform stabilized plasma at low electric power, it being possible to reduce a passage resistance to a gas passing therein.
Abstract:
An adsorbent structure including a honeycomb structure having a periphery and two ends, the honeycomb structure having a plurality of passages which are defined by partition walls and extend in an axial direction between the ends, and a composition including zeolite coated on the partition walls. The zeolite may be a high-silica zeolite having a Si/Al ratio of not less than 40. The composition may include a mixture of zeolite and heat-resistant oxide loaded with a noble metal, and the zeolite may also be loaded with a noble metal. Further, the composition may include two layers, a first layer comprising zeolite, and a second layer comprising a heat-resistant oxide loaded with a noble metal. The first layer comprising zeolite may be loaded with a noble metal.
Abstract:
A reformer includes two or more catalyst units in the flow path, capable of generating hydrogen from a reactant fluid containing an organic compound or carbon monoxide, by catalysis. In the reformer, at least two of the catalyst units satisfy the following relationship: Heat capacity of the upstream-side catalyst unit≦Heat capacity of the downstream-side catalyst unit. The reformer is improved in the relationship between these catalyst units with respect to heat capacity. This improvement leads to improvement of the reformer in safety, heating characteristics during the start-up period, efficiency of hydrogen production and reduction in production of CO as the coproduct.
Abstract:
An exhaust gas purification system for an internal combustion engine is herein disclosed which comprises an exhaust system having an adsorption flow path provided with an adsorbent capable of adsorbing harmful components such as hydrocarbons in an exhaust gas, and a catalyst flow path provided with at least one catalyst for decreasing the harmful components in the exhaust gas, the exhaust gas purification system being characterized in that an outlet of the adsorption flow path is joined to the catalyst flow path at a predetermined position on the upstream side of the catalyst to form a joint portion; the exhaust gas produced at least at the time of the operation start of the internal combustion engine is divided so as to flow through both the adsorption flow path and the catalyst flow path in a predetermined ratio, so that part of harmful components such as the hydrocarbons are adsorbed by the adsorbent in the adsorption flow path; and when the adsorbed harmful components begin to desorb from the adsorbent with the temperature rise of the adsorbent, the catalyst on the downstream of the joint portion is activated.
Abstract:
In a catalytic converter operating method according to the present invention, a heater is energized at a predetermined power level or above and thereby heated substantially concurrently with the operation of an engine. During the heating, an oxidizing gas is introduced into the catalytic converter. When the temperature of the heater exceeds a value at which a main catalyst of the catalytic converter or a light-off catalyst carried on the heater functions, the power level is reduced by an output adjuster and supply of the oxidizing gas is suspended.
Abstract:
A resistance adjusting type heater has a honeycomb structure having a large number of passages, at least two electrodes to enable electrical heating of the honeycomb structure provided on the honeycomb structure, and a resistance adjusting means, a slit, provided between the electrodes. The thicknesses of passage walls at the portions of the honeycomb structure at which electricity flows at a very high density are increased with a conductive material to prevent the abnormal heat generation at the portions of the honeycomb structure.
Abstract:
A multilayer inorganic porous membrane consisting of a monolayer or multilayer porous support having at least one surface integrally formed thereon with a porous thin layer having an average pore size less than that of the porous support, wherein a maximum pore size in the support surface is defined to be from 1 to 250 times an average pore size of the thin layer. The multilayer porous membrane is superior in preventing the occurrence of pin holes and cracks therein thereby enhancing precision of the filtration and separation.
Abstract:
A multilayer inorganic porous membrane consisting of a monolayer or multilayer porous support having at least one surface integrally formed thereon with a porous thin layer having an average pore size less than that of the porous support, wherein a maximum pore size in the support surface is defined to be from 1 to 250 times an average pore size of the thin layer. The multilayer porous membrane is superior in preventing the occurrence of pin holes and cracks therein thereby to enhancing precision of the filtration and separation.
Abstract:
A porous membrane adapted for use in a chemical reaction process, the porous membrane being formed with interconnected micropores having an average pore size less than 100am (1000 .ANG.) and containing a catalytic component such as molybdenum sulfide, platinum-alumina, palladium-silica-alumina or the like uniformly distributed therein.
Abstract:
A separation membrane includes a glassy microporous membrane and a ceramic porous support. The separation membrane has excellent heat resistance, corrosion resistance, durability, gas-separability and high mechanical strength. The separation membrane is preferably provided with a metallic or ceramic microporous membrane vapor-deposited on the surface of the glassy microporous membrane. The separation membrane can be utilized with high efficiency in diversified fields such as microfiltration or ultrafiltration of liquidal or gaseous fluids. A process for manufacturing such a separation membrane is also disclosed.