Abstract:
A system includes a retarder in electrical communication through an electric link with an alternator, and a controller that compares a power measurement with an accessory load on a system during a retard event, and can reduce an electrical load on the alternator, or can remove all electrical loads from an engine, when electric power that is generated from the retarder is measured to be greater than an accessory load on the system. The system may include an alternator that provides a motor function to rotate a shaft coupled to an engine that is mechanically coupled to one or more mechanically drivable accessories. The alternator powers the mechanically drivable accessories in place of or in addition to the engine.
Abstract:
A system includes a first communication module and a second communication module. The first communication module is configured to be disposed onboard a first vehicle of a vehicle consist, and the second communication module is configured to be disposed onboard a second vehicle of the vehicle consist. The first and second communication modules are communicatively coupled by first and second communication paths. The first and second communication modules are configured to communicate first information over the first communication path and second information over the second communication path. At least a portion of the first information includes a first command corresponding to a first operation of at least one of the first or second vehicles. At least a portion of the second information includes a second command corresponding to the first operation.
Abstract:
System including a switch control module that is configured to control operation of a first contactor and a second contactor in a vehicle system. The first and second contactors are configured to selectively connect front-end and direct-current (DC) buses, respectively, to an energy storage system of the vehicle system. The front-end bus is configured to receive electrical power from an external power source and provide the electrical power to a converter device. The converter device is configured to supply DC power to the DC bus. The switch control module is configured to close the second contactor when the vehicle system is operably coupled to the external power source so that the energy storage system is charged by the DC power. The switch control module is configured to close one of the first contactor or the second contactor when the vehicle system is operably decoupled to the external power source.
Abstract:
A locomotive communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between the propulsion-generating vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.
Abstract:
A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.
Abstract:
A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system. When the first wireless communication device is operating in the onboard communication mode, the device is configured to communicate local data signals between the propulsion-generating vehicles of the vehicle system.
Abstract:
A system and method control a powered system having an engine configured to operate using a plurality of fuel types. A first set of control signals including a first set of valve signals are communicated to each fuel tank based at least in part on a first stored engine operating profile to control amounts of fuel provided from each fuel tank to the engine. A different, second set of control signals including a second set of valve signals are communicated to the fuel tanks based at least in part on a second stored engine operating profile to control or change the amounts of fuel from each fuel tank to the engine. The system and method can switch between operating conditions associated with different external domains to alter the engine operating profile used to control the fuel or fuels supplied to the engine.
Abstract:
A method for controlling a vehicle system includes determining when the vehicle system approaches an airflow restricted area and distributing a total power output of the vehicle system among first and second vehicles of the vehicle system. The total power output is distributed by directing the first vehicle to decrease power output relative to a power output generated by the second vehicle and/or by directing the second vehicle to increase power output relative to the power output generated by the first vehicle. The method includes monitoring the power output of the second vehicle during travel of the vehicle system in the airflow restricted area to determine when the second vehicle derates and redistributing the total power output of the vehicle system among the at vehicles as the vehicle system travels in the airflow restricted area and responsive to the second vehicle derating.
Abstract:
A control system including a measurement module configured to receive motor measurements that represent operating parameters of plural traction motors of a common vehicle system as the vehicle system propels along a route. The control system also includes an analysis module configured to compare the motor measurements to an expected measurement. The expected measurement corresponds to a designated motor type. The analysis module is configured to determine that at least one of the traction motors is different from the designated motor type based on comparing the motor measurements to the expected measurement.
Abstract:
A system is provided for operating a railway network including a first railway vehicle during a trip along track segments. The system includes a first element for determining travel parameters of the first railway vehicle, a second element for determining travel parameters of a second railway vehicle relative to the track segments to be traversed by the first vehicle during the trip, a processor for receiving information from the first and the second elements and for determining a relationship between occupation of a track segment by the second vehicle and later occupation of the same track segment by the first vehicle and an algorithm embodied within the processor having access to the information to create a trip plan that determines a speed trajectory for the first vehicle. The speed trajectory is responsive to the relationship and further in accordance with one or more operational criteria for the first vehicle.