Abstract:
Device structures and design structures for a bipolar junction transistor. A first isolation structure is formed in a substrate to define a boundary for a device region. A collector is formed in the device region, and a second isolation structure is formed in the device region. The second isolation structure defines a boundary for the collector. The second isolation structure is laterally positioned relative to the first isolation structure to define a section of the device region between the first and second isolation structures.
Abstract:
A collector region is formed between insulating shallow trench isolation regions within a substrate. A base material is epitaxially grown on the collector region and the shallow trench isolation regions. The base material forms a base region on the collector region and extrinsic base regions on the shallow trench isolation regions. Further, a sacrificial emitter structure is patterned on the base region and sidewall spacers are formed on the sacrificial emitter structure. Planar raised base structures are epitaxially grown on the base region and the extrinsic base regions, and the upper layer of the raised base structures is oxidized. The sacrificial emitter structure is removed to leave an open space between the sidewall spacers and an emitter is formed within the open space between the sidewall spacers. The upper layer of the raised base structures comprises a planar insulator electrically insulating the emitter from the raised base structures.
Abstract:
Device structures and fabrication methods for a bipolar junction transistor. A trench isolation region surrounds an active region that includes a collector. A base layer is arranged over the active region, and a semiconductor layer is arranged on the base layer. The semiconductor layer includes a stepped profile with a first section having a first width adjacent to the base layer and a second section having a second width that is less than the first width. An emitter is arranged on the second section of the semiconductor layer.
Abstract:
Lateral PiN diodes and Schottky diodes with low parasitic capacitance and variable breakdown voltage structures and methods of manufacture are disclosed. The structure includes a diode with breakdown voltage determined by a dimension between p-and n-terminals formed in an i-region above a substrate.
Abstract:
Fabrication methods and device structures for heterojunction bipolar transistors. A first emitter of a first heterojunction bipolar transistor and a second collector of a second heterojunction bipolar transistor are formed in a device layer of a silicon-on-insulator substrate. A first base layer of a first heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the first emitter. A first collector of the first heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the first base layer. A second base layer of the second heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the second collector. A second emitter of the second heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the second base layer. A connection is formed between the first emitter and the second collector.
Abstract:
Device structures and fabrication methods for a heterojunction bipolar transistor. A collector of the device structure has a top surface and a sidewall that is inclined relative to the top surface. The device structure further includes an emitter, an intrinsic base that has a first thickness, and an extrinsic base coupled with the intrinsic base. The extrinsic base has a lateral arrangement relative to the intrinsic base and relative to the emitter. The intrinsic base has a vertical arrangement between the emitter and the top surface of the collector. The sidewall of the collector extends laterally to undercut the extrinsic base. The extrinsic base has a second thickness that is greater than a first thickness of the intrinsic base.
Abstract:
Device structure and fabrication methods for a bipolar junction transistor. One or more trench isolation regions are formed in a substrate to define a device region having a first width. A protect layer is formed on a top surface of the one or more trench isolation regions and a top surface of the device region. An opening is formed in the protect layer. The opening is coincides with the top surface of the first device region and has a second width that is less than or equal to the first width of the first device region. A base layer is formed that has a first section on the device region inside the first opening and a second section on the protect layer.
Abstract:
Electrical fuses and methods for forming an electrical fuse. A semiconductor substrate is implanted to define a modified region in the semiconductor substrate. Trenches that surround the modified region and that penetrate into the semiconductor substrate to a depth greater than a depth of the modified region are formed in the modified region so as to define a fuse link of the electrical fuse. The substrate is removed from beneath the fuse link with a selective etching process that removes the semiconductor substrate with a first etch rate that is higher than a second etch rate of the modified region.
Abstract:
Device structures and fabrication methods for a bipolar junction transistor. A first semiconductor layer is formed on a substrate containing a first terminal. An etch stop layer is formed on the first semiconductor layer, and a second semiconductor layer is formed on the etch stop layer. The second semiconductor layer is etched to define a second terminal at a location of an etch mask on the second semiconductor layer. A first material comprising the etch stop layer and a second material comprising the second semiconductor layer are selected such that the second material of the second semiconductor layer etches at a greater etch rate than the first material of the etch stop layer. The first semiconductor layer may be a base layer that is used to form an intrinsic base and an extrinsic base of the bipolar junction transistor.
Abstract:
Methods of forming bipolar device structures and bipolar device structures. An opening may be formed in a device layer of a silicon-on-insulator substrate that extends to a buried insulator layer of the silicon-on-insulator substrate. An intrinsic base layer may be grown within the device layer opening by lateral growth on opposite first and second sidewalls of the device layer bordering the opening. A first collector of a first bipolar junction transistor of the device structure may be formed at a first spacing from the first sidewall. A second collector of a second bipolar junction transistor of the device structure may be formed at a second spacing from the second sidewall. An emitter, which is shared by the first bipolar junction transistor and the second bipolar transistor, is formed inside the opening. Portions of the intrinsic base layer may supply respective intrinsic bases for the first and second bipolar junction transistors.