Abstract:
A method of manufacturing a complementary metal-oxide-semiconductor (CMOS) device comprising an N-type metal-oxide-semiconductor (NMOS) region and a P-type metal-oxide-semiconductor (PMOS) region is provided, that comprises: depositing a raised source and drain (RSD) layer of a first type in the NMOS region and the PMOS region at the same time; selectively removing the RSD layer of the first type in one of the NMOS region and the PMOS region; and depositing an RSD layer of a second type in the one of the NMOS region and the PMOS region.
Abstract:
The present disclosure provides a method of forming a semiconductor device structure including forming a first gate stack comprising a first gate dielectric material and a first gate electrode material over a first active region in an upper portion of a substrate, forming a first spacer structure adjacent to the first gate stack, and forming first raised source/drain (RSD) regions at opposing sides of the first gate stack on the first active region in alignment with the first spacer structure. Herein, forming the first spacer structure includes forming a first spacer structure on sidewalls of the first gate stack, the first gate dielectric extending in between the first spacer and the upper surface portion, patterning the first gate dielectric material, and forming a second spacer over the first spacer and the patterned first gate dielectric material.
Abstract:
In one example, a reticle disclosed herein includes a body having a center, an arrangement of a plurality of exposure patterns, wherein a center of the arrangement is offset from the center of the body, and at least one open feature defined on or through the body of the reticle. In another example, a method is disclosed that includes forming a layer of photoresist above a plurality of functional die and a plurality of incomplete die, exposing the photoresist material positioned above at least one of the functional die and/or at least one of the incomplete die, performing an incomplete die exposure processes via an open feature of the reticle to expose substantially all of the photoresist material positioned above the plurality of incomplete die, and developing the photoresist to remove the portions of the photoresist material positioned above the incomplete die.
Abstract:
In one example, a reticle disclosed herein includes a body having a center, an arrangement of a plurality of exposure patterns, wherein a center of the arrangement is offset from the center of the body, and at least one open feature defined on or through the body of the reticle. In another example, a method is disclosed that includes forming a layer of photoresist above a plurality of functional die and a plurality of incomplete die, exposing the photoresist material positioned above at least one of the functional die and/or at least one of the incomplete die, performing an incomplete die exposure processes via an open feature of the reticle to expose substantially all of the photoresist material positioned above the plurality of incomplete die, and developing the photoresist to remove the portions of the photoresist material positioned above the incomplete die.
Abstract:
The present disclosure relates to manufacturing techniques and respective semiconductor devices in which the capping material of gate electrode structures may be removed together with portions of the capping material of resistors on the basis of a highly controllable directional etch process, wherein raised drain and source regions may be protected on the basis of a fill material.
Abstract:
The present disclosure relates to manufacturing techniques and respective semiconductor devices in which the capping material of gate electrode structures may be removed together with portions of the capping material of resistors on the basis of a highly controllable directional etch process, wherein raised drain and source regions may be protected on the basis of a fill material.
Abstract:
The present disclosure provides a method of forming a semiconductor device structure including forming a first gate stack comprising a first gate dielectric material and a first gate electrode material over a first active region in an upper portion of a substrate, forming a first spacer structure adjacent to the first gate stack, and forming first raised source/drain (RSD) regions at opposing sides of the first gate stack on the first active region in alignment with the first spacer structure. Herein, forming the first spacer structure includes forming a first spacer structure on sidewalls of the first gate stack, the first gate dielectric extending in between the first spacer and the upper surface portion, patterning the first gate dielectric material, and forming a second spacer over the first spacer and the patterned first gate dielectric material.
Abstract:
A method of forming a semiconductor device is disclosed including providing a silicon-on-insulator substrate comprising a semiconductor bulk substrate, a buried oxide layer formed on the semiconductor bulk substrate and a semiconductor layer formed on the buried oxide layer, and forming a transistor device on the silicon-on-insulator substrate including providing a gate structure on the semiconductor layer having a gate electrode and a first cap layer on the gate electrode, growing an oxide liner on the transistor device having a first part covering the gate structure and a second part covering the semiconductor layer, forming a second cap layer on the oxide liner, at least partially removing the second part of the oxide liner underneath the second cap layer and the first part of the oxide liner, and epitaxially forming raised source/drain regions on the semiconductor layer.
Abstract:
A method of forming a semiconductor device is disclosed wherein sigma-shaped cavities are formed in alignment with a gate structure such that a cavity tip of the sigma-shaped cavities has a small lateral distance to the channel region, while a lateral distance from the silicon-germanium material filled into the cavity and extending along the sidewall of the gate structure above the active region is at least maintained, if not increased. A semiconductor device is formed wherein the semiconductor device comprises a gate structure disposed over an active region of a semiconductor substrate. The gate structure has a gate electrode and a sidewall spacer structure with a first spacer of L-shape and a second spacer disposed on the first spacer. In alignment with the gate structure, sigma-shaped cavities are formed in the active region and embedded SiGe material is epitaxially grown in the sigma-shaped cavities.
Abstract:
A device including an SOI substrate and an isolation structure positioned at least partially in a trench that extends through a buried insulation layer and into a semiconductor bulk substrate of the SOI substrate is disclosed. The isolation structure includes a first dielectric layer positioned in a lower portion of the trench, a first material layer positioned above the first dielectric layer, the first material layer having a material different from a material of the first dielectric layer, and a second dielectric layer positioned above the first material layer, the second dielectric layer having a material different from the material of the first material layer.