Abstract:
In fully depleted SOI transistors, specifically designed semiconductor materials may be provided for different types of transistors, thereby, for instance, enabling a reduction of hot carrier injection in transistors that are required to be operated at a moderately high operating voltage. To this end, well-controllable epitaxial growth techniques may be applied selectively for one type of transistor, while not unduly affecting the adjustment of material characteristics of a different type of transistor.
Abstract:
Generally, the subject matter disclosed herein is directed to semiconductor devices with reduced threshold variability having a threshold adjusting semiconductor material in the device active region. One illustrative semiconductor device disclosed herein includes an active region in a semiconductor layer of a semiconductor device substrate, the active region having a region length and a region width that are laterally delineated by an isolation structure. The semiconductor device further includes a threshold adjusting semiconductor alloy material layer that is positioned on the active region substantially without overlapping the isolation structure, the threshold adjusting semiconductor alloy material layer having a layer length that is less than the region length. Additionally, the disclosed semiconductor device includes a gate electrode structure that is positioned above the threshold adjusting semiconductor alloy material layer, the gate electrode structure including a high-k dielectric material and a metal-containing electrode material formed above the high-k dielectric material.
Abstract:
The threshold voltage of a sophisticated transistor may be adjusted by providing a specifically designed semiconductor alloy in the channel region of the transistor, wherein a negative effect of this semiconductor material with respect to inducing a strain component in the channel region may be reduced or over-compensated for by additionally incorporating a strain-adjusting species. For example, a carbon species may be incorporated in the channel region, the threshold voltage of which may be adjusted on the basis of a silicon/germanium alloy of a P-channel transistor. Consequently, sophisticated metal gate electrodes may be formed in an early manufacturing stage.
Abstract:
In fully depleted SOI transistors, specifically designed semiconductor materials may be provided for different types of transistors, thereby, for instance, enabling a reduction of hot carrier injection in transistors that are required to be operated at a moderately high operating voltage. To this end, well-controllable epitaxial growth techniques may be applied selectively for one type of transistor, while not unduly affecting the adjustment of material characteristics of a different type of transistor.
Abstract:
A semiconductor structure includes a substrate, at least one electrically conductive pillar provided over the substrate and an electrically conductive structure provided over the substrate. The electrically conductive pillar includes an inner portion and an outer layer that is provided below the inner portion and lateral to the inner portion. The electrically conductive structure also includes an inner portion and an outer layer that is provided below the inner portion and lateral to the inner portion. The electrically conductive structure annularly encloses each of the at least one electrically conductive pillar. The outer layer of each of the at least one electrically conductive pillar contacts the outer layer of the electrically conductive structure. The outer layer of the at least one electrically conductive pillar and the outer layer of the electrically conductive structure are formed of different metallic materials.
Abstract:
A semiconductor structure includes a substrate, at least one electrically conductive pillar provided over the substrate and an electrically conductive structure provided over the substrate. The electrically conductive pillar includes an inner portion and an outer layer that is provided below the inner portion and lateral to the inner portion. The electrically conductive structure also includes an inner portion and an outer layer that is provided below the inner portion and lateral to the inner portion. The electrically conductive structure annularly encloses each of the at least one electrically conductive pillar. The outer layer of each of the at least one electrically conductive pillar contacts the outer layer of the electrically conductive structure. The outer layer of the at least one electrically conductive pillar and the outer layer of the electrically conductive structure are formed of different metallic materials.
Abstract:
A method of manufacturing a complementary metal-oxide-semiconductor (CMOS) device comprising an N-type metal-oxide-semiconductor (NMOS) region and a P-type metal-oxide-semiconductor (PMOS) region is provided, that comprises: depositing a raised source and drain (RSD) layer of a first type in the NMOS region and the PMOS region at the same time; selectively removing the RSD layer of the first type in one of the NMOS region and the PMOS region; and depositing an RSD layer of a second type in the one of the NMOS region and the PMOS region.
Abstract:
A method of forming a semiconductor device structure is disclosed including providing a first active region and a second active region in an upper surface portion of a substrate, the first and second active regions being laterally separated by at least one isolation structure, forming a first gate structure comprising a first gate dielectric and a first gate electrode material over the first active region, and a second gate structure comprising a second gate dielectric and a second gate electrode material over the second active region, wherein a thickness of the second gate dielectric is greater than the thickness of the first gate dielectric, and forming a first sidewall spacer structure to the first gate structure and a second sidewall spacer structure to the second gate structure, wherein a lateral thickness of the second sidewall spacer structure is greater than a lateral thickness of the first sidewall spacer structure.
Abstract:
A method of forming a semiconductor device structure is disclosed including providing a first active region and a second active region in an upper surface portion of a substrate, the first and second active regions being laterally separated by at least one isolation structure, forming a first gate structure comprising a first gate dielectric and a first gate electrode material over the first active region, and a second gate structure comprising a second gate dielectric and a second gate electrode material over the second active region, wherein a thickness of the second gate dielectric is greater than the thickness of the first gate dielectric, and forming a first sidewall spacer structure to the first gate structure and a second sidewall spacer structure to the second gate structure, wherein a lateral thickness of the second sidewall spacer structure is greater than a lateral thickness of the first sidewall spacer structure.
Abstract:
A method of forming a gate structure over a hybrid substrate structure with topography having a bulk region and an SOI region is disclosed including forming a gate material layer above the SOI and bulk regions, forming a mask layer above the gate material layer, forming a first planarization layer above the mask layer, forming a first gate structure masking pattern above the first planarization layer, patterning the first planarization layer in alignment with the first gate structure masking pattern, and patterning the mask layer in accordance with the patterned first planarization layer, resulting in a gate mask disposed above the gate material layer.