Abstract:
A battery outgassing filter system is provided. The system includes a battery cell, an external casing encapsulating the battery cell and including a casing vent, and an outgassing filter disposed upon the casing vent and including a filter element including a first filter element portion operable to contain a first size of particulate matter and a second filter element portion operable to contain a second size of particulate matter relatively smaller than the first size of particulate matter.
Abstract:
Described herein is a desulfurization method for desulfurizing a SCR device treating an exhaust gas. The desulfurization method includes injecting a reductant into the exhaust gas upstream from or into the SCR device and increasing a temperature of the exhaust gas.
Abstract:
A snorkel assembly for reading optimization of a sensor, wherein the snorkel assembly may be configured to be positioned around and spaced apart from the sensor. The snorkel assembly may include an upstream side and a downstream side. The snorkel assembly may include a cup section and a tube section extending from the cup section. The tube section may include an inlet opening on the upstream side of the snorkel assembly. The cup section may include an exhaust opening on the downstream side of the snorkel assembly.
Abstract:
Selective catalytic reduction filter (SCRF) devices and systems incorporating the same are provided. Systems can include an exhaust gas source, an exhaust gas conduit capable of receiving an exhaust gas stream from the exhaust gas source, and an SCRF device in fluid communication therewith. The SCRF device can include a filter, a selective catalytic reduction (SCR) catalyst disposed on at least portion of the filter, and a soot oxidizing catalyst (SOC) material disposed on at least a portion of one or more of the filter and the SCR catalyst. The SOC material can include one or more transition metal oxides, excluding platinum group metals. The SOC material can include one or more of a titanium oxide, an iron oxide, a tungsten oxide, a cerium oxide, and acidic zirconia. The SOC material can be in amorphous form. The SOC material can be biased towards to the upstream side of the filter.
Abstract:
Selective catalytic reduction filter (SCRF) devices and systems incorporating the same are provided. Systems can include an exhaust gas source, an exhaust gas conduit capable of receiving an exhaust gas stream from the exhaust gas source, and an SCRF device in fluid communication therewith. The SCRF device can include a filter, a selective catalytic reduction (SCR) catalyst disposed on at least portion of the filter, and a NOx storage coating on at least a portion of the filter. The NOx storage coating can include one or more of palladium, barium, or cerium. The NOx storage coating can be biased towards the upstream side of the filter. The NOx storage coating can overlap a portion of the SCR catalyst. The system can further include a water-absorbing alkali oxide. The water-absorbing alkali oxide can be disposed within the SCRF device, the exhaust gas conduit, or in an upstream oxidation catalyst device.
Abstract:
A mixer includes a plurality of blades extending along a longitudinal axis. The blades are arranged in a single row, and are axially spaced from each other along a transverse axis. Each of the blades defines a window. Each of the blades includes an upstream portion, and a downstream portion. Each of the blades includes a bend at the window that forms an interior blade angle between its respective upstream portion and its respective downstream portion. The single row of the blades is arranged to include a first group of blades and a second group of blades. The interior blade angle of each of the blades in the first group faces in a first axial direction along the transverse axis. The interior blade angle of each of the blades in the second group faces in a second axial direction along the transverse axis.
Abstract:
A method for estimating the amount of soot accumulated in a particulate filter of a vehicle exhaust gas system is provided. The system may include an engine, an exhaust gas system, having a particulate filter, and a controller configured to execute the present method. The controller may be configured to evaluate an instantaneous volumetric flow rate of an exhaust gas flowing through the exhaust gas system; monitor an exhaust gas pressure drop across the particulate filter; determine a drive state of the vehicle based on the instantaneous volumetric flow rate of exhaust gas and the exhaust gas pressure drop; and execute one of a first control action when the drive state is a steady-state drive state and a second control action when the drive state is a transient-state drive state.
Abstract:
An exhaust gas treatment system includes a SCR device and a DOC converter disposed upstream of the SCR device. A DEF dosing system includes an injector disposed upstream of the DOC converter for injecting ammonia reductant into the flow of exhaust gas upstream of the DOC converter. The DOC converter includes a corrugated metallic substrate having an ammonia-neutral oxidation catalyst compound that is operable to oxidize hydrocarbons and carbon monoxide in the flow of exhaust gas, while not reacting with the ammonia reductant in the flow of exhaust gas. The ammonia-neutral oxidation catalyst compound allows the ammonia reductant in the flow of exhaust gas to pass through the DOC converter, for reaction with a selective catalytic reduction composition in the SCR device.
Abstract:
A battery outgassing filter system is provided. The system includes a battery cell, an external casing encapsulating the battery cell and including a casing vent, and an outgassing filter disposed upon the casing vent and including a filter element including a first filter element portion operable to contain a first size of particulate matter and a second filter element portion operable to contain a second size of particulate matter relatively smaller than the first size of particulate matter.
Abstract:
Methods for monitoring and/or regenerating a selective catalytic reduction particulate filter (SCRF) are provided. The SCRF comprises a porous filter substrate and a catalytic composition capable of reducing NOx applied thereto. Methods include determining a SCRF pressure differential (dP) and determining the SCRF soot loading using a 1st SCRF dP map if the SCRF has not been degreened, or a 2nd SCRF dP map if the SCRF has been degreened. The SCRF has been degreened if one or more of a degreening cumulative time and temperature threshold has been achieved and a filter regeneration count threshold has been achieved. The 1st and 2nd SCRF dP maps correlate SCRF dP and one or more of SCRF temperature, exhaust mass flow, and exhaust volumetric flow to a SCRF soot loading. The method can optionally further include initiating a filter regeneration if the determined SCRF soot loading is above a soot loading threshold.