Abstract:
A system to mitigate diesel exhaust fluid deposits in vehicle exhaust system flexible couplings includes a diesel exhaust pipeline. A diesel exhaust fluid injector is connected to the diesel exhaust pipeline to inject a diesel exhaust fluid into the diesel exhaust pipeline. A flexible coupling is connected to the diesel exhaust pipeline. A diesel exhaust fluid collection device is positioned in the diesel exhaust pipeline between a connection location into the diesel exhaust pipeline of the diesel exhaust fluid injector and the flexible coupling. The diesel exhaust fluid collection device includes a liquid diesel exhaust fluid collection volume where an un-vaporized portion of the diesel exhaust fluid is collected.
Abstract:
An exhaust gas treatment system includes a selective catalytic reduction device (SCR); a reductant injector upstream from the SCR and configured to communicate reductant into the SCR via a conduit defined by an outer periphery, a first mixer disposed within the conduit upstream from the reductant injector, and a second mixer disposed within the conduit downstream from the reductant injector and upstream from the SCR. Each of the first mixer and the second mixer comprises a plurality of blades extending between a center region of the conduit to the conduit periphery, wherein each of the blades at least partially obstructs fluid flow through the conduit and are angled relative to a cross sectional plane of the conduit such that fluid flow is permitted between adjacent blades, and the plurality of blades form a turbulence plane defined by a plane angle measured from the two outermost blades of the turbulence plane.
Abstract:
A method is disclosed of providing a fuel efficient regeneration of an exhaust after-treatment (AT) system that includes a lean oxides of nitrogen (NOX) trap (LNT) and a selective catalytic reduction filter (SCRF) positioned downstream of the LNT. The method includes regulating a selectable position valve. The valve permits a first gas flow portion to pass through the LNT and diverts a remaining second portion of exhaust gas flow from a first passage connecting an engine and the AT system to a second exhaust passage to thereby bypass the LNT. The method also includes regulating a first device to inject fuel into the first portion of the exhaust gas flow. The injection of fuel in to the first portion of the exhaust gas flow provides fuel efficient regeneration of the LNT and promotes NOX conversion and ammonia (NH3) formation in the LNT. A system employing the method is also disclosed.
Abstract:
A method for diagnosing an Oxidation Catalyst (OC) device of an exhaust gas treatment system is provided. The method monitors a differential temperature across the OC device. The method determines whether the differential temperature reveals a temperature spike. The method determines that the OC device operates properly in response to determining that the differential temperature reveals a temperature spike.
Abstract:
An engine exhaust system includes an exhaust pipe assembly having an engine exhaust system inlet configured to receive engine exhaust and an engine exhaust system outlet. The system includes a first selective catalytic reduction (SCR) catalyst device positioned downstream in exhaust flow from the engine exhaust system inlet. The first SCR catalyst device includes a substrate with a metallic catalyst coated on the substrate. An electric heater is configured to heat the metallic catalyst. A second SCR catalyst device is positioned downstream in engine exhaust flow from the first SCR catalyst device and upstream of the engine exhaust system outlet. The first SCR catalyst device and the exhaust pipe assembly define an empty chamber between the substrate and the second SCR catalyst device. Engine exhaust flows directly from the substrate to the second SCR catalyst device through the empty chamber.
Abstract:
An exhaust system for a diesel engine, includes an exhaust passage adapted to be attached to the diesel engine. A diesel oxidation catalyst is provided in the exhaust passage along with a selective catalyst reduction device disposed downstream from the diesel oxidation catalyst. A diesel exhaust fluid mixing system includes a diesel exhaust fluid injection nozzle and a mixing device defining a single inlet opening and a single outlet opening connected to one another by a partial spiral flow passage. The diesel exhaust fluid injection nozzle injects diesel exhaust fluid directly into the inlet opening of the partial spiral flow passage.
Abstract:
An after-treatment (AT) system for a flow of exhaust gas of an internal combustion engine includes a first AT device and a second AT device in fluid communication with and positioned in the exhaust gas flow downstream of the first AT device. The AT system also includes an exhaust passage configured to carry the exhaust gas flow from the first AT device to the second AT device. The AT system additionally includes an injector configured to introduce a reductant into the exhaust passage. The second AT device includes an inlet cone having a volute defining a spiral primary path for the exhaust gas flow into the second AT device and configured to generate a swirling motion of and turbulence in the exhaust gas flow. A vehicle employing the AT system is also disclosed.
Abstract:
A system and method is provided for enhancing the performance of an SCR device, particularly by routinely reducing the amount of reductant deposits accumulated in an exhaust gas system, when the reductant is injected at a reduced temperature. The system may include an engine, an exhaust gas system, an SCR device, an injection device, and a controller configured to execute the present method. The controller may be configured to select an initial injection rate and an initial injection temperature for the reductant; estimate the amount of accumulated reductant deposits present within the exhaust gas system; compare the amount of accumulated reductant deposits to a threshold amount of reductant deposits allowable in the exhaust gas system; and initiate a reductant deposit burn-off mode when the amount of accumulated reductant deposits is greater than the threshold amount of reductant deposits allowable in the exhaust gas system.
Abstract:
A system and method is provided for enhancing the performance of an SCR device, particularly by routinely reducing the amount of reductant deposits accumulated in an exhaust gas system, when the reductant is injected at a reduced temperature. The system may include an engine, an exhaust gas system, an SCR device, an injection device, and a controller configured to execute the present method. The controller may be configured to select an initial injection rate and an initial injection temperature for the reductant; estimate the amount of accumulated reductant deposits present within the exhaust gas system; compare the amount of accumulated reductant deposits to a threshold amount of reductant deposits allowable in the exhaust gas system; and initiate a reductant deposit burn-off mode when the amount of accumulated reductant deposits is greater than the threshold amount of reductant deposits allowable in the exhaust gas system.
Abstract:
An exhaust gas treatment system to treat exhaust gas includes a particulate filter, a second temperature sensor and a control module. The particulate filter includes a PF substrate configured to trap particulate matter contained in the exhaust gas. The second temperature sensor is configured to output an outlet temperature signal indicating an outlet temperature at the outlet of the particulate filter. The control module is in electrical communication with the second temperature sensor to receive the outlet temperature signal. The control module determines a maximum substrate temperature of the PF substrate based on the outlet temperature. The control module is further configured to determine whether the particulate filter includes an active washcoat disposed thereon based on the maximum substrate temperature.