Abstract:
A method of resistance spot welding a workpiece stack-up that that includes an aluminum workpiece and an adjacent overlapping steel workpiece involves assembling the workpiece stack-up so that an intermediate metallurgical additive is positioned between the faying surfaces of the aluminum and steel workpieces. The intermediate metallurgical additive includes at least one of carbon, silicon, nickel, manganese, chromium, cobalt, or copper, and has the capability to counteract the growth and formation of Fe—Al intermetallic compounds within a molten metal weld pool created within the aluminum workpiece during resistance spot welding of the workpiece stack-up. In certain aspects of the disclosed method, the intermediate metallurgical additive may be one or more metallurgical additive deposits that are deposited onto the faying surface of the aluminum workpiece or the faying surface of the steel workpiece by an oscillating wire arc welding process.
Abstract:
A linear magnetic sensor shield system comprises first and second shield parts. The system may include first and second field sensor assemblies, each having field sensors disposed therein. The first shield part may be disposed adjacent to a first side and a third side of the first field sensor assembly, and the second shield part may be disposed adjacent to a second side of the second field sensor assembly. The shield parts may be formed of mu metal, by of example, or they may have a curved shape or a thickness in the range of about 0.015 inch to about 0.030 inch. A torque transmitting device is also provided.
Abstract:
An electrical part testing system for evaluating quality of an insulated electrical part, including a computer-controlled switching apparatus for providing an original voltage to the electrical part automatically according to a pre-established testing scheme calling for provision of voltage to each phase of the part, in turn, while grounding the other phases of the part. A high-frequency filter for receiving receive the original voltage, receiving a load voltage emanating from the electrical part in response to the part receiving the original voltage, and filtering the original voltage from the load voltage to isolate any partial-discharge voltage added to the original voltage by the electrical part while the part is being electrified by the original voltage, yielding a filtered signal. A computing device determines, based on a comparison of a peak amplitude of the partial-discharge inception voltage to a voltage threshold, the quality of the electrical part being tested.
Abstract:
A continuity tester that has particular application for inspecting the insulation on the stator windings in an electric machine. The continuity tester includes a power supply, a brush having conductive bristles, and an analog-to-digital (A/D) converter. One terminal of the power supply is electrically coupled to the brush and another terminal of the power supply is electrically coupled to the A/D converter and the stator being tested. The conductive brush is selectively positioned against the exposed windings of the stator, and if an electrical circuit is formed as a result of loss of insulation, the potential at the input of the A/D converter drops, which can be detected. In one embodiment, the conductive brush is a manual brush that is moved across the stator windings, and in alternate embodiments the conductive brush is specially configured to be positioned against the conductive windings in an automated process.
Abstract:
A method of joining together adjacent overlapping copper workpieces by way of resistance spot welding involves providing a workpiece stack-up that includes a first copper workpiece and a second copper workpiece that lies adjacent to the first copper workpiece. The faying surface of the first copper workpiece includes a projection that ascends beyond a surrounding base surface of the faying surface and makes contact, either directly or indirectly, with an opposed faying surface of the second copper workpiece. Once provided, a compressive force is applied against the first and second copper workpieces and an electric current is passed momentarily through the first and second copper workpieces. The electric current initially flows through the projection to generate and concentrate heat within the projection prior to the projection collapsing. This concentrated heat surge allows a metallurgical joint to be established between the first and second copper workpieces.
Abstract:
An aperture plate for a welding apparatus includes a body defining an aperture. The body of the aperture plate includes a first end and a second end that is opposite the first end. In addition, the body includes a first surface intersecting the first and second ends. Moreover, the body includes a second surface formed opposite the first surface. The second surface is nonparallel to the first surface.
Abstract:
An arc welding/brazing process is disclosed that is useful to join together a first copper piece and a second copper piece without damaging more heat-sensitive materials that may be located nearby is disclosed. The arc welding/brazing process includes using a non-consumable electrode wire, which electrically communicates with a weld control in a straight polarity orientation, to strike an arc across a gap established between a leading tip end of the electrode wire and the first copper piece. The current that flows through the arc when the arc is established heats the first copper piece such that the first copper piece becomes joined to a second copper piece. The joint between the first copper piece and the second copper piece may be an autogenous weld joint or a braze joint.
Abstract:
A linear magnetic sensor shield system comprises first and second shield parts. The system may include first and second field sensor assemblies, each having field sensors disposed therein. The first shield part may be disposed adjacent to a first side and a third side of the first field sensor assembly, and the second shield part may be disposed adjacent to a second side of the second field sensor assembly. The shield parts may be formed of mu metal, by of example, or they may have a curved shape or a thickness in the range of about 0.015 inch to about 0.030 inch. A torque transmitting device is also provided.
Abstract:
A method of resistance spot welding a steel workpiece to an aluminum or aluminum alloy workpiece is disclosed. One step of the disclosed method involves providing a workpiece stack-up that includes a steel workpiece and an aluminum workpiece. Another step involves preheating the welding electrode that is meant to contact the aluminum or aluminum alloy workpiece. Yet another step of the disclosed method involves pressing the preheated welding electrode and another welding electrode against opposite sides of the workpiece stack-up, with the preheated welding electrode abutting the aluminum or aluminum alloy workpiece, and passing an electrical current between the two welding electrodes at a weld site to initiate and grow a molten weld pool within the aluminum or aluminum alloy workpiece.
Abstract:
A method of forming a weld interface between a first workpiece and a second workpiece includes arranging a reactive braze material at a first joining surface of the first workpiece. The reactive material is selected to react upon being heated to a temperature below the solidus temperature of the first and second workpieces to form a liquid-containing reaction product. Furthermore, an assembly is prepared of the first workpiece and the second workpiece with the first joining surface of the first workpiece and a second joining surface of the second workpiece separated by the reactive material. The second workpiece is then heated with a first laser beam following a first path and with a second laser beam following a second path.