摘要:
A method of fabricating a memory system is disclosed that includes a set of non-volatile storage elements. The method includes forming a floating gate having a top and at least two sides. A dielectric cap is formed at the top of the floating gate. An inter-gate dielectric layer is formed around the at least two sides of the floating gate and over the top of the dielectric cap. A control gate is formed over the top of the floating gate, the inter-gate dielectric layer separates the control gate from the floating gate. In one aspect, forming the dielectric cap includes implanting oxygen in the top of the floating gate and heating the floating gate to form the dielectric cap from the implanted oxygen and silicon from which the floating gate was formed.
摘要:
A non-volatile memory fabrication process includes the formation of a complete memory cell layer stack before isolation region formation. The memory cell layer stack includes an additional place holding control gate layer. After forming the layer stack columns, the additional control gate layer will be incorporated between an overlying control gate layer and underlying intermediate dielectric layer. The additional control gate layer is self-aligned to isolation regions between columns while the overlying control gate layer is etched into lines for contact to the additional control gate layer. In one embodiment, the placeholder control gate layer facilitates a contact point to the overlying control gate layer such that contact between the control gate layers and the charge storage layer is not required for select gate formation.
摘要:
A method of fabricating a memory system is disclosed that includes a set of non-volatile storage elements. The method includes forming a floating gate having a top and at least two sides. A dielectric cap is formed at the top of the floating gate. An inter-gate dielectric layer is formed around the at least two sides of the floating gate and over the top of the dielectric cap. A control gate is formed over the top of the floating gate, the inter-gate dielectric layer separates the control gate from the floating gate. In one aspect, forming the dielectric cap includes implanting oxygen in the top of the floating gate and heating the floating gate to form the dielectric cap from the implanted oxygen and silicon from which the floating gate was formed.
摘要:
A memory system is disclosed that includes a set of non-volatile storage elements. A given memory cell has a dielectric cap above the floating gate. In one embodiment, the dielectric cap resides between the floating gate and a conformal IPD layer. The dielectric cap reduces the leakage current between the floating gate and a control gate. The dielectric cap achieves this reduction by reducing the strength of the electric field at the top of the floating gate, which is where the electric field would be strongest without the dielectric cap for a floating gate having a narrow stem.
摘要:
High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
摘要:
High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
摘要:
A method of manufacturing a semiconductor device includes forming a second barrier layer over a first level, forming a first dielectric layer over the second barrier layer, forming a second dielectric layer over the first dielectric layer, etching the first and second dielectric layers to form an opening through the first dielectric layer and the second dielectric layer, depositing an organic fill material in the opening and removing a portion of the organic fill material before etching the second dielectric layer to form a trench. The organic fill material can then be completely removed and the second barrier layer is etched to expose the first level. The trench and a via are then filled with a conductive material to form a feature.
摘要:
A cleaving tool provides pressurized gas to the edge of a substrate to cleave the substrate at a selected interface. A substrate, such as a bonded substrate, is loaded into the cleaving tool, and two halves of the tool are brought together to apply a selected pressure to the substrate. A compliant pad of selected elastic resistance provides support to the substrate while allowing the substrate to expand during the cleaving process. Bringing the two halves of the tool together also compresses an edge seal against the perimeter of the substrate. A thin tube connected to a high-pressure gas source extends through the edge seal and provides a burst of gas to separate the substrate into at least two sheets. In a further embodiment, the perimeter of the substrate is struck with an edge prior to applying the gas pressure.
摘要:
A method of forming a via in a interlevel dielectric of a semiconductor device wherein the via has a fluted sidewall. A semiconductor substrate is provided having a first conductive layer formed thereon. A dielectric layer is then formed on the first conductive layer. A photoresist layer is deposited on a dielectric layer and a contact opening is formed in the photoresist layer to expose a contact region of the dielectric layer. A first etch step is performed to remove portions of the dielectric layer proximal to the contact region to form a first stage of the fluted via. The first stage includes a first sidewall stage extending from an upper surface of the dielectric layer at an angle less than 50.degree.. The first stage of the fluted via exterds a first lateral distance which is greater than a lateral dimension of the contact opening. A second etch step is then performed to further remove portions of the dielectric layer to form a second stage of the fluted via. The second stage includes a second sidewall stage extending from the first sidewall stage at a second angle between 40.degree. and 70.degree.. A third etch step is then performed to further remove portions of the dielectric layer to form a third and final. stage of the fluted via. The fluted via extends from an upper surface of the dielectric layer to an upper surface of the first conductive layer. The third stage includes a third stage sidewall extending from said second stage side wall to said upper surface of said first conductive layer at an angle between 60.degree. and 80.degree..
摘要:
An integrated circuit wafer and a manufacturing process for etching low K spin-on dielectrics such as HSQ in a High Density Plasma etch reactor utilizes roof and wall temperature to improve across-the-wafer uniformity, and a mixture of C4F8 and C2F6 etch gases to eliminate mid via etch stop and to maintain selectivity over underlying etch-stop layers.