Abstract:
The excimer laser device receives data on a target value of pulse energy from an external device and outputs a pulse laser beam. The excimer laser device includes a master oscillator, at least one power amplifier including a chamber provided in an optical path of the pulse laser beam outputted from the master oscillator, a pair of electrodes provided in the chamber, and an electric power source configured to apply voltage to the pair of electrodes, and a controller configured to control the electric power source of one power amplifier of the at least one power amplifier to stop applying the voltage to the pair of electrodes based on the target value of the pulse energy.
Abstract:
A gas laser device may include: a laser chamber containing laser gas; a first discharge electrode disposed in the laser chamber; a second discharge electrode disposed to face the first discharge electrode in the laser chamber; and a condenser including a polyimide dielectric and configured to supply power to between the first discharge electrode and the second discharge electrode.
Abstract:
The laser system may include a delay circuit unit, first and second trigger-correction units, and a clock generator. The delay circuit unit may receive a trigger signal, output a first delay signal obtained by delaying the trigger signal by a first delay time, and output a second delay signal obtained by delaying the trigger signal by a second delay time. The first trigger-correction unit may receive the first delay signal and output a first switch signal obtained by delaying the first delay signal by a first correction time. The second trigger-correction unit may receive the second delay signal and output a second switch signal obtained by delaying the second delay signal by a second correction time. The clock generator may generate a clock signal that is common to the delay circuit unit and the first and second trigger-correction units.
Abstract:
In an example of the present invention is an extreme ultraviolet light generation apparatus including: a droplet supply device configured to successively supply droplets; a charging electrode being configured to control charging of droplets supplied from the droplet supply unit; and a target controller configured to control electric polarities of the droplets supplied from the droplet supply unit by controlling potential of the charging electrode in such a way that successive droplets join together to become a target droplet, wherein the droplets controlled in charging by the charging electrode include a plurality of groups each composed of successive droplets, and, in each of the groups, a droplet at one end is charged positively or negatively, a droplet at the other end is uncharged or charged in a polarity being the same as a polarity of an adjacent droplet in a group adjacent to the droplet at the other end.
Abstract:
A target supply device 4 may include a tank 51, formed of a metal, that holds a target material, an insulating member 62 that makes contact with at least part of the periphery of the tank 51, and a heater 58 that is separated from the tank 51 and heats the tank 51 via the insulating member 62.