Abstract:
A method of improving wireless communication of an apparatus includes detecting a wireless signal from a wireless communication device at a first signal strength level, detecting the wireless signal increasing from the first strength level to exceed a threshold level associated with the wireless communication device, requesting, by the apparatus, an input from a user of the apparatus when the signal strength exceeds a threshold level associated with the wireless communication device, wherein the input indicates whether the apparatus should cause an action to occur at the wireless communication device, adjusting, at the apparatus, the threshold level associated with the wireless communication device after receiving the input, and automatically transmitting a signal from the apparatus to the wireless communication device to cause the wireless communication device to perform the action when the apparatus detects the wireless signal from the wireless communication device has exceeded the adjusted threshold level.
Abstract:
A system and method for automatic path light control based on a detected size and classification of motion around the device using passive infrared (PIR) sensor technologies and distributed classification algorithms, and on detected light levels in and around the path area using ambient light sensor (ALS) technologies. By using such sensor data, the path light does not need to be maintained at a fixed value, which may be inadequate or inefficient at times, nor require constant user adjustments. Implementations of the disclosed subject matter enable automatic path light control that can be dynamic and automatically adjusted to fit the environment, the current user characteristics and the current user movements through the environment.
Abstract:
In an implementation of the disclosed subject matter, a device may emit a first emission sequence of infrared radiation at a subject, and capture a first reflected sequence of infrared radiation reflected from the subject. The first emission sequence may be compared to the first reflected sequence, and, based on the comparison, a sequence of variations may be determined. The sequence of variations may be compared to signal pattern stored in a sleep profile for the subject. The subject may be determined to have exhibited sleep behavior based on the comparison of the sequence of variations to the signal pattern stored in the sleep profile. In response to determining the subject has exhibited sleep behavior, the device may capture a second reflected sequence of radiation reflected from the subject. A breathing rate of the subject and/or a heart rate of the subject may be determined based on the second reflected sequence.
Abstract:
A security system includes a plurality of sensors to detect entry into a premises by an unauthorized party and to detect a location of the unauthorized party through at least a portion of the premises, a storage component to store a log of the detected location of the unauthorized party, an audio component to audibly announce the detected location of the unauthorized party, and a processor to control the audio component to announce the detected location at predetermined intervals or upon a change in the detected location of the unauthorized party.
Abstract:
Systems and methods of using active infrared (AIR) sensors to map a room of a home or building and determine whether an external portal (e.g., window and/or door) of the room is open or closed are provided. In particular, the systems and methods include outputting infrared (IR) light from an IR light source of an active infrared (AIR) sensor, receiving reflected IR light with a light sensor, and determining, with a processor coupled to the light sensor, whether a window of a room is open according to the received reflected IR light.
Abstract:
Systems and techniques are provided for dynamic volume adjustment. A signal including a detected distance to a person may be received from a proximity sensor of a smart home environment. A volume adjustment for a speaker of the smart home environment may be generated based on the detected distance to the person and a sound level associated with the detected distance to the person. The volume of the speaker may be adjusted based on the volume adjustment. A signal from a sensor of the smart home environment indicating that the sensor has been tripped may be received. The proximity sensor may be triggered based on the received signal indicating the sensor has been tripped to detect a distance to the person to generate the detected distance. An alarm may be sounded through the speaker.
Abstract:
A method of improving wireless communication of an apparatus includes detecting a wireless signal from a wireless communication device at a first signal strength level, detecting the wireless signal increasing from the first strength level to exceed a threshold level associated with the wireless communication device, requesting, by the apparatus, an input from a user of the apparatus when the signal strength exceeds a threshold level associated with the wireless communication device, wherein the input indicates whether the apparatus should cause an action to occur at the wireless communication device, adjusting, at the apparatus, the threshold level associated with the wireless communication device after receiving the input, and automatically transmitting a signal from the apparatus to the wireless communication device to cause the wireless communication device to perform the action when the apparatus detects the wireless signal from the wireless communication device has exceeded the adjusted threshold level.
Abstract:
Systems and techniques are provided for dynamic volume adjustment. A signal including a detected distance to a person may be received from a proximity sensor of a smart home environment. A volume adjustment for a speaker of the smart home environment may be generated based on the detected distance to the person and a sound level associated with the detected distance to the person. The volume of the speaker may be adjusted based on the volume adjustment. A signal from a sensor of the smart home environment indicating that the sensor has been tripped may be received. The proximity sensor may be triggered based on the received signal indicating the sensor has been tripped to detect a distance to the person to generate the detected distance. An alarm may be sounded through the speaker.
Abstract:
System and methods of integrating data captured by one or more sensors of a mobile device with a security system are provided. The systems and method include determining an operating mode of a security system, determining whether a mobile device is located within a predetermined range of the security system, and receiving, by the security system, sensor data collected by the mobile device according to the operating mode of the security system and the determined location of the mobile device.
Abstract:
A system and method is provided for the control of a network of devices wherein each device of the networked devices provides for the operation of a sensor such as an accelerometer, processor and communication element within each device, and network and/or cloud based processing and storage, to process collected data to permit detection and predictive analysis of traffic patterns, weather patterns and other forces of nature. The system and method can analyze duration and magnitude of vibration signals, and considering maps and known locations of devices, tracks and highways and historical data regarding each, use machine learning techniques to accurately classify the motion and provide real-time and predictive analysis.