Abstract:
The present invention addresses a problem of providing an MgB2 wire material having a small reversible bending radius, a superconducting coil using the same, and an MRI without lowering a critical current value and a critical current density of the MgB2 wire material to an extreme. To solve the problem, provided are a superconducting wire having a plurality of MgB2 strands and a first base metal, a superconducting coil using the same, and an MRI, the superconducting wire being characterized in that in a cross section orthogonal to a wire longitudinal direction, a center point of an area surrounded by the plurality of MgB2 strands and a center axis of a cross section of the superconducting wire are disposed in separated positions.
Abstract:
Provided are: a superconducting wire rod in which the non-uniform deformation of the shape of an MgB2 core material has been controlled; a superconducting coil; a magnetic generator; and a method for producing a superconducting wire rod. A superconducting wire rod (100A) according to the present invention comprises: a center material (106) of which at least the outer circumferential surface is formed of a metal that does not react with Mg; a plurality of single-core wires (103) disposed around the center material (106), each of the single-core wires having an MgB2 superconductor core material (101) coated with a first coating material (102) made of a metal that does not react with Mg; and an outer shell material (105) disposed outside the plurality of single-core wires (103), wherein at least the inner circumferential surface of the outer shell material (105) is formed of a metal that does not react with Mg.
Abstract:
The present invention is intended to increase the moisture resistance of a resin-sealed electronic control device. The resin-sealed electronic control device includes: a semiconductor chip; a chip capacitor; a chip resistor; a bonding member; a substrate; a case; a heat radiating plate; a glass coating; and a first sealing material. The glass coating directly covers the electronic circuit formed by the element group including: the semiconductor chip; the chip capacitor; and the chip resistor, the bonding member and the substrate, and is sealed by the first sealing material. By being water impermeable, the glass coating prevents water absorption in the vicinity of the element group, and can prevent an increase in the leak current of the semiconductor chip due to water absorption, and an insulation performance drop such as lowered insulation resistance caused by migration within the element group.
Abstract:
The purpose of the present invention is to provide a low-melting-point glass resin composite material with which the heat resistance and heat conductivity of an insulating resin can be improved. The low-melting-point glass resin composite material includes: a lead-free low-melting-point glass composition that contains Ag2O, V2O5, and TeO2, and in which the total content of Ag2O, V2O5, and TeO2 is 75 mass % or more; and a resin composition having a 5% thermal weight reduction temperature equal to or greater than a softening point temperature of the low-melting-point glass composition.
Abstract:
An aluminum wire body, in which an aluminum or aluminum alloy electric wire and a metal to be joined are joined by solder, wherein the solder includes an oxide glass including vanadium and a conducting particle. Preferably, the conducting particle contained in the solder is 90% by volume or less and the oxide glass is 20% by volume to 90% by volume. Further preferably, the oxide glass includes 40% by mass or more of Ag2O in terms of oxides and the glass transition point is 180° C. or less.
Abstract:
In the connection portion for a superconducting wire, a plurality of superconducting wires are integrated by a sintered body containing MgB2, end portions of the superconducting wires each having an outer peripheral surface of a superconducting filament exposed are inserted into a container in parallel. The container has an opening having a diameter larger than a wire diameter of the superconducting wires on at least one side in a longitudinal direction of the superconducting wires, and the sintered body is in contact with the outer peripheral surfaces of the superconducting filaments. The method for connecting a superconducting wire includes: exposing the outer peripheral surfaces of the superconducting filaments; inserting the superconducting wires into the container; filling the container with a raw material; and heat-treating the raw material to generate the sintered body. The raw material is pressurized in parallel to the longitudinal direction of the superconducting wires and then heat-treated.
Abstract:
The following two problems arise when carbon is added to a starting material powder in the process of production of an MgB2 superconductor: (1) an impurity phase increases; and (2) the degree of substitution of carbon at boron sites is spatially non-uniform. This superconductor production method comprises: a mixing step of mixing a starting material powder and an additive; and a heat treatment step of heat-treating the mixture prepared in the mixing step. The starting material powder is MgB2 powder or a mixed powder of magnesium and boron, and the additive is an Mg—B—C compound containing three elements of magnesium, boron and carbon.
Abstract:
An MgB2 superconducting wire includes a core containing MgB2 and a metal sheath which surrounds the core. The core includes at least a first MgB2 core positioned on the center side, and a second MgB2 core positioned outside the first MgB2 core, and the density of the second MgB2 core is lower than the density of the first MgB2 core.
Abstract:
Neutron-absorbing glass that can be input into water, wherein gadolinium oxide, boron oxide, and zinc oxide are contained and B2O3 is contained 42 to 65 mol % in terms of oxide above.
Abstract:
The present invention provides a MgB2 multi-core wire including a plurality of MgB2 single-core wires having a MgB2 superconducting core part and a metal sheath part the metal sheath part is provided on the outer surface of the MgB2 superconducting core part, wherein a plurality of the MgB2 single-core wires is bound with each other, and a gap is provided between a plurality of the MgB2 single-core wires, and a refrigerant for flowing in the gap in a direction of a longitudinal axis of the MgB2 single-core wires.