Abstract:
A method for decompressing data includes receiving, by a network element, a first plurality of packets. Also, the method includes receiving, by the network element, a second plurality of packets. Additionally, the method includes decompressing the first plurality of packets by a first decompressor using a first compression scheme and decompressing the second plurality of packets by a second decompressor using a second compression scheme.
Abstract:
Efficient D2D link integration can be achieved by allowing mobile devices to independently initiate D2D/connection-proxy discovery without re-broadcasting beacons originating from the wireless access point. A mobile station wanting to establish a D2D link may broadcast a search message to neighboring mobile stations, which may return offer messages specifying a connection quality and/or parameters of the candidate indirect connection. The requesting mobile station may then select one of the responding neighboring mobile stations through which to establish the indirect connection. Responding mobile stations may delay offer message transmission by a period that is proportional to a connection quality to reduce offer message redundancy.
Abstract:
A software designed protocol (SDP) network node includes a receiver, and a processor operatively coupled to the receiver. The receiver receives instructions, and receives packets. The processor updates a configuration of the SDP network node in accordance with the received instructions, and processes the received packets.
Abstract:
A system and method for agile wireless access network is provided. A method embodiment for agile radio access network management includes determining, by a network controller, capabilities and neighborhood relations of radio nodes in the radio access network. The network controller then configures a backhaul network infrastructure for the radio access network in accordance with the capabilities and the neighborhood relations of the radio nodes.
Abstract:
It is possible to implement traffic engineering policies in a packet switched network by dynamically configuring different transport protocols to be used over different path segments of an end-to-end path. Specifically, a controller may communicate forward information base (FIB) control signaling instructions to network nodes along an end-to-end path. The FIB signaling instructions may configure network nodes on different path segments of the end-to-end path to route a traffic flow using different path transport protocols. For example, the FIB signaling instructions may assign a link-based transport protocol to a first path segment, and a path-based or source-based transport protocol to a second path segment. Alternatively, the controller may indirectly assign transport protocols to regions/path segments by classifying regions of a packet switched network as link-preferred regions, path-preferred regions, or no-preference regions.
Abstract:
System and method embodiments are provided for traffic behavior driven dynamic zoning for distributed traffic engineering (TE) in software defined networking (SDN). In an embodiment, a method in a network component for dynamic zoning for TE in SDN includes receiving at the network component network information from at least one SDN controller from a plurality of SDN controllers in a network; determining with the network component a plurality of TE zones for the network, selecting a local zone TE controller for each of the plurality of TE zones, and selecting a master TE controller according to the network information and a zoning scheme, wherein the local zone TE controller and the master TE controller are selected form one of the SDN controllers; and transmitting with the network component an indication of the local zone TE controllers, zone membership, and the master controllers to at least some of the SDN controllers.
Abstract:
An embodiment method for downlink machine type communications (MTC), includes receiving, at a base station, parameters including a geographic location related to a remote equipment (RE), receiving a predicate identifying the RE, determining a target zone in which the RE is located, determining a radio bearer associated with the target zone, and transmitting a data packet and the predicate by the base station on the radio bearer to a plurality of REs disposed in the target zone, the plurality of REs comprising at least the RE.
Abstract:
A method and apparatus for estimating a location using a network function. In the method, at least one positioning apparatus registers to a management function by sending a registration message and transmit a location information message containing an indication of geographic location of said positioning apparatus; the management function gets the at least one positioning apparatus registered according to the received registration message, and sends a response message including information associated with a transmission of the location information message to the at least one positioning apparatus. The location information message is transmitted by the at least one positioning apparatus to a mobile device according to the information included in the response message.
Abstract:
Methods and System for enhanced navigation and traffic management are provided. A controller obtains input indicative of conditions on a physical road, traffic status information associated with the physical road and requirements of a mobile device. Based at least in part on the input, one or more virtual lanes defining respective routes along the physical road are determined. The virtual lanes are communicated to mobile devices which follow them in place of painted lanes. The virtual lanes can be dynamically updated for example to avoid obstacles. Different lanes can correspond to different priorities of traffic.
Abstract:
A network architecture and methods of managing packet data unit (PDU) sessions in a network are provided. The methods include PDU session establishment procedures, PDU session modification procedures, PDU session state transfer procedures, PDU session release procedures, and user equipment (UE) handover procedures.