Abstract:
A scheduling grant control method, user equipment, and a network device are disclosed. The method includes: receiving grant information sent by a network device, where the grant information indicates a grant value of data transmission on an uplink data channel by user equipment; determining an effectively starting moment of the grant information according to the grant value and a reception moment at which the grant information is received; and adjusting, on the uplink data channel and based on the grant value, transmission of the data at the effectively starting moment. Based on the foregoing technical solutions, in the scheduling grant control method in embodiments of the present invention, after receiving grant information, UE may flexibly select different effectively starting moments according to different grant information.
Abstract:
Embodiments of the present invention provide a method for sending control information and a base station. The method includes performing rate matching on a coded sequence obtained by performing channel coding on second control information to obtain a symbol sequence. The second control information includes bit information indicating layer number information. The method also includes sending the symbol sequence to a user equipment (UE) over a high speed shared control channel (HS-SCCH).
Abstract:
The present invention relates to a dedicated channel transmission method and apparatus, where the method includes: when a dedicated physical control channel DPCCH discontinuous transmission mode of user equipment UE is activated, if a dedicated physical data channel DPDCH is configured and the UE has to-be-transmitted data, starting, by the UE, transmission of the DPDCH when a transmission period of a DPCCH starts, where the DPDCH carries the to-be-transmitted data. This avoids the DPCCH from remaining in a continuous transmission state when no data is to be transmitted, thereby resolving a problem of serious power waste and interference resulting from continuous sending of the DPCCH in an existing DCH service; this also avoids a power waste problem further caused by a continuous reception state of a receive end, thereby reducing transmit power of UE, and reducing power consumption and interference brought about by a dedicated channel.
Abstract:
Embodiments of the present invention provide a method, an apparatus, and a system for sending data in hybrid networking. The method includes: determining an order quantity N of highest-order MIMO data and a quantity M of data types in the hybrid networking, where N is an even number not less than 2, and M is a natural number not less than 2; performing ith linear transformation processing on ith-type data among the M types of data, to obtain N pieces of ith-type output data having a same power, where i is a natural number less than or equal to M; and respectively outputting the N pieces of ith-type output data having a same power to N physical antennas, so that each physical antenna combines output data received by the physical antenna and then sends data obtained after the combining.
Abstract:
The present invention discloses a method for indicating pilot state, a radio network controller. The method includes: acquiring, by an RNC, state information of a scheduled non-precoded pilot, where the state information of the scheduled non-precoded pilot indicates activated state or deactivated state of the scheduled non-precoded pilot; and sending, by the RNC, 4Tx MIMO mode configuration signaling to a UE, where the configuration signaling carries the state information of the scheduled non-precoded pilot, so that the UE acquires state of the scheduled non-precoded pilot according to the state information of the scheduled non-precoded pilot when being configured to 4Tx MIMO mode. The method for indicating pilot state and the radio network controller according to embodiments of the present invention can reduce physical-layer signaling overheads and reduce a delay in acquiring state of a scheduled non-precoded pilot by the UE in 4Tx MIMO mode.
Abstract:
The present invention provides a method, network side device and user equipment of variable bandwidth. The method includes: configuring a first type carrier and a second type carrier, wherein a chip rate of the first type carrier is 3.8 Mcps, a chip rate of the second type carrier is P*3.84 Mcps, and P is smaller than 1 and larger than 0; using the first type carrier and/or the second type carrier for communication. In this way, since the chip rate of the second type carrier is low and occupied bandwidth is small, the second type carrier may be suitable for non-standard bandwidth, thus utilization efficiency of bandwidth may be improved and waste of the bandwidth may be reduced.
Abstract:
Embodiments of the present invention provide a data transmission method, apparatus, and system. The method includes receiving transmitter antenna quality information sent by a receiver; determining, according to the transmitter antenna quality information, a transmitter antenna that transmits data; switching a first transmission mode to a second transmission mode when the transmitter antenna quality information satisfies a preset condition; and transmitting the data by using the second transmission mode and the determined transmitter antenna.
Abstract:
Embodiments of the present invention provide a data transmission method, apparatus, and system. The method includes receiving transmitter antenna quality information sent by a receiver; determining, according to the transmitter antenna quality information, a transmitter antenna that transmits data; switching a first transmission mode to a second transmission mode when the transmitter antenna quality information satisfies a preset condition; and transmitting the data by using the second transmission mode and the determined transmitter antenna.
Abstract:
A signal encoding method and device and a method for encoding a joint feedback signal are provided. When two carriers are configured with multiple-input and multiple-output (MIMO), Hybrid Automatic Repeat reQuest-ACKnowledgement (HARQ-ACK) signals of the two carriers are combined into a joint feedback signal. The joint feedback signal is mapped into a codeword according to predetermined mapping relationship between signals and codewords. Therefore, through the method for combining and encoding feedback signals of two carriers for transmission on a code channel in a dual cell (DC)-MIMO mode, bit error ratio (BER) and detection error cost are decreased, power overhead is saved, and a cubic metric (CM) value of the system is not affected, thereby enhancing the performance of the system.
Abstract:
An uplink signal control method and apparatus, which are used to resolve a problem that when a UE is not within primary carrier signal coverage of a micro cell, the micro cell cannot control uplink transmission of the UE on a primary carrier. The method includes: determining, by a first network device, uplink control configuration information for user equipment (UE), where the uplink control configuration information includes information about a control channel occupied by control information, which is transmitted by a second network device on a second carrier, for controlling an uplink transmission action of the UE on a first carrier; and notifying, by the first network device, the uplink control configuration information to the second network device, and sending the uplink control configuration information to the UE or instructing the second network device to send the uplink control configuration information to the UE.