THROUGH-MOLD STRUCTURES
    11.
    发明申请

    公开(公告)号:US20170178990A1

    公开(公告)日:2017-06-22

    申请号:US14973184

    申请日:2015-12-17

    Abstract: Devices and methods include an electronic package having a through-mold interconnect are shown herein. Examples of the electronic package include a package assembly. The package assembly including a substrate having a first substrate surface. The first substrate surface including a conductive layer attached to the first substrate surface. The package assembly includes a die communicatively coupled to the conductive layer and a contact block. The contact block including a first contact surface on one end of the contact block, a second contact surface on an opposing side of the contact block, and a contact block wall extended therebetween. The contact block includes a conductive material. The first contact surface is coupled to the package assembly with a joint extended partially up the contact block wall. The electronic package further includes an overmold covering portions of the substrate, conductive layer, and die. The second contact surface of the contact block is exposed through the overmold.

    Semiconductor package including a modular side radiating waveguide launcher

    公开(公告)号:US11830831B2

    公开(公告)日:2023-11-28

    申请号:US16327810

    申请日:2016-09-23

    CPC classification number: H01L23/66 H01P3/121 H01L2223/6627

    Abstract: Integration of a side-radiating waveguide launcher system into a semiconductor package beneficially permits the coupling of a waveguide directly to the semiconductor package. Included are a first conductive member and a second conductive member separated by a dielectric material. Also included is a conductive structure, such as a plurality of vias, that conductively couples the first conductive member and the second conductive member. Together, the first conductive member, the second conductive member, and the conductive structure form an electrically conductive side-radiating waveguide launcher enclosing shaped space within the dielectric material. The shaped space includes a narrow first end and a wide second end. An RF excitation element is disposed proximate the first end and a waveguide may be operably coupled proximate the second end of the shaped space.

    Multiplexer and combiner structures embedded in a mmwave connector interface

    公开(公告)号:US10992016B2

    公开(公告)日:2021-04-27

    申请号:US16466629

    申请日:2017-01-05

    Abstract: Embodiments of the invention include a mm-wave waveguide connector and methods of forming such devices. In an embodiment the mm-wave waveguide connector may include a plurality of mm-wave launcher portions, and a plurality of ridge based mm-wave filter portions each communicatively coupled to one of the mm-wave launcher portions. In an embodiment, the ridge based mm-wave filter portions each include a plurality of protrusions that define one or more resonant cavities. Additional embodiments may include a multiplexer portion communicatively coupled to the plurality of ridge based mm-wave filter portions and communicative coupled to a mm-wave waveguide bundle. In an embodiment the plurality of protrusions define resonant cavities with openings between 0.5 mm and 2.0 mm, the plurality of protrusions are spaced apart from each other by a spacing between 0.5 mm and 2.0 mm, and wherein the plurality of protrusions have a thickness between 200 μm and 1,000 μm.

    SEMICONDUCTOR PACKAGES WITH ANTENNAS
    14.
    发明申请

    公开(公告)号:US20200286841A1

    公开(公告)日:2020-09-10

    申请号:US16843803

    申请日:2020-04-08

    Abstract: In various embodiments, disclosed herein are systems and methods directed to the fabrication of a coreless semiconductor package (e.g., a millimeter (mm)-wave antenna package) having an asymmetric build-up layer count that can be fabricated on both sides of a temporary substrate (e.g., a core). The asymmetric build-up layer count can reduce the overall layer count in the fabrication of the semiconductor package and can therefore contribute to fabrication cost reduction. In further embodiments, the semiconductor package (e.g., a millimeter (mm)-wave antenna packages) can further comprise dummification elements disposed near one or more antenna layers. Further, the dummification elements disposed near one or more antenna layers can reduce image current and thereby increasing the antenna gain and efficiency.

    THROUGH-MOLD STRUCTURES
    15.
    发明申请

    公开(公告)号:US20180277458A1

    公开(公告)日:2018-09-27

    申请号:US15992830

    申请日:2018-05-30

    Abstract: Devices and methods include an electronic package having a through-mold interconnect are shown herein. Examples of the electronic package include a package assembly. The package assembly including a substrate having a first substrate surface. The first substrate surface including a conductive layer attached to the first substrate surface. The package assembly includes a die communicatively coupled to the conductive layer and a contact block. The contact block including a first contact surface on one end of the contact block, a second contact surface on an opposing side of the contact block, and a contact block wall extended therebetween. The contact block includes a conductive material. The first contact surface is coupled to the package assembly with a joint extended partially up the contact block wall. The electronic package further includes an overmold covering portions of the substrate, conductive layer, and die. The second contact surface of the contact block is exposed through the overmold.

    Mmwave dielectric waveguide interconnect topology for automotive applications

    公开(公告)号:US11594801B2

    公开(公告)日:2023-02-28

    申请号:US16613070

    申请日:2017-07-01

    Abstract: Embodiments of the invention include autonomous vehicles and mm-wave systems for communication between components. In an embodiment the vehicle includes an electronic control unit (ECU). The ECU may include a printed circuit board (PCB) and a CPU die packaged on a CPU packaging substrate. In an embodiment, the CPU packaging substrate is electrically coupled to the PCB. The ECU may also include an external predefined interface electrically coupled to the CPU die. In an embodiment, an active mm-wave interconnect may include a dielectric waveguide, and a first connector coupled to a first end of the dielectric waveguide. In an embodiment, the first connector comprises a first mm-wave engine, and the first connector is electrically coupled to the external predefined interface. Embodiments may also include a second connector coupled to a second end of the dielectric waveguide, wherein the second connector comprises a second mm-wave engine.

    Multiplexer and combiner structures embedded in a mmwave connector interface

    公开(公告)号:US11462810B2

    公开(公告)日:2022-10-04

    申请号:US17194022

    申请日:2021-03-05

    Abstract: Embodiments of the invention include a mm-wave waveguide connector and methods of forming such devices. In an embodiment the mm-wave waveguide connector may include a plurality of mm-wave launcher portions, and a plurality of ridge based mm-wave filter portions each communicatively coupled to one of the mm-wave launcher portions. In an embodiment, the ridge based mm-wave filter portions each include a plurality of protrusions that define one or more resonant cavities. Additional embodiments may include a multiplexer portion communicatively coupled to the plurality of ridge based mm-wave filter portions and communicative coupled to a mm-wave waveguide bundle. In an embodiment the plurality of protrusions define resonant cavities with openings between 0.5 mm and 2.0 mm, the plurality of protrusions are spaced apart from each other by a spacing between 0.5 mm and 2.0 mm, and wherein the plurality of protrusions have a thickness between 200 μm and 1,000 μm.

Patent Agency Ranking