Abstract:
One or more embodiments may provide a method for performing a replay. The method includes initiating execution of a program, the program having a plurality of sets of instructions, and each set of instructions has a number of chunks of instructions. The method also includes intercepting, by a virtual machine unit executing on a processor, an instruction of a chunk of the number of chunks before execution. The method further includes determining, by a replay module executing on the processor, whether the chunk is an active chunk, and responsive to the chunk being the active chunk, executing the instruction.
Abstract:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
Methods and systems to identify threads responsible for causing a concurrency bug in a computer program having a plurality of concurrently executing threads are disclosed. An example method disclosed herein includes defining, with a processor, a data type. The data type including a first predicate, the first predicate being invoked using a first program instruction inserted in a first thread of the plurality of threads, a second predicate, the second predicate being invoked using a second program instruction inserted in a second thread of the plurality of threads, and an expression defining a relationship between the first predicate and the second predicate. The method further includes, in response to determining the relationship is satisfied during execution of the computer program, identifying the first thread and the second thread as responsible for the concurrency bug.
Abstract:
A processor is described comprising memory access conflict detection circuitry to identify a conflict pertaining to a transaction being executed by a thread that believes it has locked information within a memory. The processor also includes logging circuitry to construct and report out a packet if the memory access conflict detection circuitry identifies a conflict that causes the transaction to be aborted.
Abstract:
A system, processor, and method to record the interleavings of shared memory accesses in the presence of complex multi-operation instructions. An extension to instruction atomicity (IA) is disclosed that makes it possible for software to infer partial information about a multi-operation execution if the hardware has recorded a dependency due to an instruction atomicity violation (IAV). By monitoring the progress of a multi-operation instruction, the need for complex multi-operation emulation is unnecessary.
Abstract:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
A system is disclosed that includes a processor and a dynamic random access memory (DRAM). The processor includes a hybrid transactional memory (HyTM) that includes hardware transactional memory (HTM), and a program debugger to replay a program that includes an HTM instruction and that has been executed has been executed using the HyTM. The program debugger includes a software emulator that is to replay the HTM instruction by emulation of the HTM. Other embodiments are disclosed and claimed.
Abstract:
Methods and systems to identify threads responsible for causing a concurrency bug in a computer program having a plurality of concurrently executing threads are disclosed. An example method disclosed herein includes defining, with a processor, a data type. The data type including a first predicate, the first predicate being invoked using a first program instruction inserted in a first thread of the plurality of threads, a second predicate, the second predicate being invoked using a second program instruction inserted in a second thread of the plurality of threads, and an expression defining a relationship between the first predicate and the second predicate. The method further includes, in response to determining the relationship is satisfied during execution of the computer program, identifying the first thread and the second thread as responsible for the concurrency bug.
Abstract:
A system and method to enhance execution of architected instructions in a processor uses auxiliary code to optimize execution of base microcode. An execution context of the architected instructions may be profiled to detect potential optimizations, resulting in generation and storage of auxiliary microcode. When the architected instructions are decoded to base microcode for execution, the base microcode may be enhanced or modified using retrieved auxiliary code.