Abstract:
A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
Abstract:
A device for converting heat into mechanical energy is disclosed. The device includes a channel flow boiler having at least one channel adapted to heat a working fluid for generating a liquid-gas mixture; an expansion device adapted to expand the liquid-gas mixture; and a movable element arranged such that the expanding liquid-gas mixture at least partially converts an internal and/or kinetic energy of the liquid-gas mixture into mechanical energy associated with the movable element; wherein the channel flow boiler and/or the expansion device is adapted to supply heat to the liquid-gas mixture.
Abstract:
A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
Abstract:
A desalination system (1) for producing a distillate from a feed liquid includes: a steam raising device (2) having a liquid section (5) and a steam section (6) which are separated by a membrane system (7); a membrane distillation device (3) having a first steam section (11) and a liquid section (12) which are separated by a wall (14) and having a second steam section (13) which is separated from the liquid section (12) by a membrane system (15); and a heat exchange device (4) having a first liquid section (21) and a second liquid section (22), which are separated by a wall (23).
Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
Abstract:
A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
Abstract:
A desalination system (1) for producing a distillate from a feed liquid includes: a steam raising device (2) having a liquid section (5) and a steam section (6) which are separated by a membrane system (7); a membrane distillation device (3) having a first steam section (11) and a liquid section (12) which are separated by a wall (14) and having a second steam section (13) which is separated from the liquid section (12) by a membrane system (15); and a heat exchange device (4) having a first liquid section (21) and a second liquid section (22), which are separated by a wall (23).
Abstract:
A desalination system (1) for producing a distillate from a feed liquid includes: a steam raising device (2) having a liquid section (5) and a steam section (6) which are separated by a membrane system (7); a membrane distillation device (3) having a first steam section (11) and a liquid section (12) which are separated by a wall (14) and having a second steam section (13) which is separated from the liquid section (12) by a membrane system (15); and a heat exchange device (4) having a first liquid section (21) and a second liquid section (22), which are separated by a wall (23).