Abstract:
A device for converting heat into mechanical energy is disclosed. The device includes a channel flow boiler having at least one channel adapted to heat a working fluid for generating a liquid-gas mixture; an expansion device adapted to expand the liquid-gas mixture; and a movable element arranged such that the expanding liquid-gas mixture at least partially converts an internal and/or kinetic energy of the liquid-gas mixture into mechanical energy associated with the movable element; wherein the channel flow boiler and/or the expansion device is adapted to supply heat to the liquid-gas mixture.
Abstract:
A device for converting heat into mechanical energy is disclosed. The device includes a channel flow boiler having at least one channel adapted to heat a working fluid for generating a liquid-gas mixture; an expansion device adapted to expand the liquid-gas mixture; and a movable element arranged such that the expanding liquid-gas mixture at least partially converts an internal and/or kinetic energy of the liquid-gas mixture into mechanical energy associated with the movable element; wherein the channel flow boiler and/or the expansion device is adapted to supply heat to the liquid-gas mixture.
Abstract:
The disclosure generally relates to methods for manufacturing a filled gap region or cavity between two surfaces forming a device microchip. In one embodiment, the cavity results from two surfaces, for example, a PCB and a chip or two chips. More specifically, the disclosure relates to a method of manufacture and the resulting apparatus having porous underfill to enable rework of the electrical interconnects of a microchip on a multi-chip module. In one embodiment, the disclosure builds on the thermal underfill concept and achieves high thermal conductivity by the use of alumina fillers. Alternatively, other material such as silica filler particles may be selected to render the underfill a poor thermal conductive. In one embodiment, the disclose is concerned with reworkability of the material.
Abstract:
A bridging arrangement includes a first and a second surface defining a gap therebetween. At least one surface of the first and second surface has an anisotropic energy landscape. A plurality of particles defines a path between the first and second surface bridging the gap.
Abstract:
A working fluid (6) for a device (4) for converting heat into mechanical energy is disclosed. The working fluid (6) comprises a fluid (7) having a boiling temperature in the range between 30 and 250° C. at a pressure of 1 bar and nanoparticles (8) which are dispersed or suspended in the liquid phase of the fluid (7). Said nanoparticles (8) are instrumented as condensation and/or boiling nuclei and the surface of said nanoparticles (8) is adapted to support condensation and/or boiling.
Abstract:
A working fluid (6) for a device (4) for converting heat into mechanical energy is disclosed. The working fluid (6) comprises a fluid (7) having a boiling temperature in the range between 30 and 250° C. at a pressure of 1 bar and nanoparticles (8) which are dispersed or suspended in the liquid phase of the fluid (7). Said nanoparticles (8) are instrumented as condensation and/or boiling nuclei and the surface of said nanoparticles (8) is adapted to support condensation and/or boiling.