Abstract:
Embodiments of methods, systems, and storage medium associated with are disclosed herein. In one instance, the method may include: first determining whether the computing device is connected to a network, based on a result of the first determining, monitoring data traffic between the computing device and the network, wherein the data traffic is associated with at least one application residing on the computing device, based on the monitoring, second determining whether the at least one application has been updated, and initiating a transition of the computing device to a sleep mode upon a result of the second determining that indicates that the at least one application has been updated. Other embodiments may be described and/or claimed.
Abstract:
Example computing systems with off-load processing for networking related tasks are disclosed. Example consumer electronic devices disclosed herein include first wireless interface circuitry to support cellular communication and second wireless interface circuitry to support wireless local area network communication. Disclosed example consumer electronic devices also include processor circuitry to monitor a communication environment, select one of the first wireless interface circuitry or the second wireless interface circuitry to provide a user device in communication with the consumer electronic device with access to a network, and connect the user device with the network via the selected one of the first wireless interface circuitry or the second wireless interface circuitry. Disclosed example consumer electronic devices further include a housing dimensioned to be positioned in a consumer residence.
Abstract:
Example computing systems with off-load processing for networking related tasks are disclosed. Example consumer electronic devices disclosed herein include first wireless interface circuitry to support cellular communication and second wireless interface circuitry to support wireless local area network communication. Disclosed example consumer electronic devices also include processor circuitry to monitor a communication environment, select one of the first wireless interface circuitry or the second wireless interface circuitry to provide a user device in communication with the consumer electronic device with access to a network, and connect the user device with the network via the selected one of the first wireless interface circuitry or the second wireless interface circuitry. Disclosed example consumer electronic devices further include a housing dimensioned to be positioned in a consumer residence.
Abstract:
Source devices are provided that increase quality of displayed images by dynamically integrating higher fidelity update frames into a base stream encoded using an encoding technique (e.g., chroma-subsampling and/or another lossless encoding technique). Use of base image frames enables backward compatibility with existing technology and serves as a baseline for bandwidth scaling. The fidelity update frames may include raw image data, lossy, or losslessly compressed image data, and/or additional subsampled image data. The image data included in the fidelity update frames may apply to the entire base image frame or a portion thereof. The fidelity update frames may include incremental data or complete, high fidelity image data for a portion of an entire image. The source devices may store and implement fidelity management policies that control operation of the devices to balance resource consumption against fidelity to meet the needs of specific operational environments.
Abstract:
Techniques related to encoding image content for transmission and display via a remote device with improved latency and efficiency are discussed. Such techniques may include skipping one or more of frame capture, encode, packetization, and transmission for a frame based on a skip indicator. One or more selective updates may be captured for the skipped frame and integrated into an encode of a subsequent non-skipped frame, which may be packetized and transmitted for to the remote device for presentment to a user.
Abstract:
Techniques for image rendering are described herein. The techniques may include providing image data to an encoder for transmission to a display. An indication of whether at least a portion of the image data is video data or non-video data is provided. A first policy may be implemented for image data that is video data. The first policy prioritizes transmission of the image data over encoding image quality. A second policy may be implemented for image data that is non-video data. The second policy prioritizes encoded image quality over transmission of the encoded images.
Abstract:
An apparatus includes logic to control heat generation in a device. The device to operate at least in one of a first state and a second state, wherein the device to consume more power in the first state than in the second state. The device to connect to a network at least for a portion of time while in the second state. The logic to select a plurality of thermal control solutions to decrease the generation of heat in the device in the second state, the selected thermal control solution to be performed while the device is in the second state to reduce the generated heat to below a predetermined level.
Abstract:
Computing systems with off-load processing for networking related tasks are disclosed. A first mobile electronic device includes first wireless communication circuitry to support cellular communication; and second wireless communication circuitry to support wireless communication. The first electronic device includes processor circuitry to: identify a first one of a first cellular network or a second cellular network based on availability of the first and second cellular networks; initiate establishment of a first communication link between a second mobile electronic device and the first one of the first cellular network or the second cellular network via the first wireless communication circuitry and the second wireless communication circuitry; and initiate establishment of a second communication link between the second mobile electronic device and a second one of the first cellular network or the second cellular network based on a change in the availability of the first and second cellular networks.
Abstract:
Sink devices are provided that increase quality of displayed images by dynamically integrating higher fidelity update frames into a base stream encoded using an encoding technique (e.g., chroma-subsampling and/or another lossless encoding technique). Use of base image frames enables backward compatibility with existing technology and serves as a baseline for bandwidth scaling. The fidelity update frames may include raw image data, lossy, or losslessly compressed image data, and/or additional subsampled image data. The image data included in the fidelity update frames may apply to the entire base image frame or a portion thereof. The fidelity update frames may include incremental data or complete, high fidelity image data for a portion of an entire image. The sink devices may store and implement fidelity management policies that control operation of the devices to balance resource consumption against fidelity to meet the needs of specific operational environments.
Abstract:
In accordance with some embodiments, instead of always defaulting the primary display on or off, while mirroring its display to a secondary display, a sensor reading may be used to decide whether the primary display should be on or off. In other words, depending on a condition sensed by one or more sensors, a decision is made whether to turn the primary display on if the default setting is off or off if the default setting is on.