摘要:
A light control device is formed by ferroelectric material and N electrodes positioned adjacent thereto to define an N-sided regular polygonal region or circular region therebetween where N is a multiple of four.
摘要:
A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity of the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.
摘要:
A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity of the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.
摘要:
A lattice matched silicon germanium (SiGe) semiconductive alloy is formed when a {111} crystal plane of a cubic diamond structure SiGe is grown on the {0001} C-plane of a single crystalline Al2O3 substrate such that a orientation of the cubic diamond structure SiGe is aligned with a orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium. A layer of Si1-xGex is formed on the cubic diamond structure SiGe. The value of X (i) defines an atomic percent of germanium satisfying 0.2277
摘要翻译:当在单晶Al 2 O 3衬底的{0001} C面上生长立方晶体结构SiGe的{111}晶面时,形成晶格匹配硅锗(SiGe)半导体合金,使得<111> 立方金刚石结构SiGe与{0001} C面的<1,0,-1.0>取向对齐。 通过使用硅原子比为0.7223原子%和0.2777原子百分比的锗的SiGe组合来实现衬底和SiGe之间的晶格匹配。 在立方金刚石结构SiGe上形成Si1-xGex层。 X(i)的值定义了满足0.2277
摘要:
A light control device is formed by ferroelectric material and N electrodes positioned adjacent thereto to define an N-sided regular polygonal region or circular region therebetween where N is a multiple of four.
摘要:
An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.
摘要:
A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.
摘要:
“Super-hetero-epitaxial” combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a “Tri-Unity” system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.
摘要:
A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.
摘要:
Integrated universal chemical detector in a micro-optical chip in which chemical/bio-sensitive micro/nano-pixels are aligned to create diffraction patterns that can be visually or instrumentally categorized in order to identify a substantial plurality of agents. By using a diffraction method to create a macroscopic diffraction image, a single small array can effectively detect hundreds or even thousands of different chemicals. The apparatus can be further automated by analyzing the diffraction patterns electronically.