Abstract:
The physical and mechanical properties of closed cell phenolic foam are improved by incorporating into certain foamable phenolic resole compositions small quantities of alkyl glucosides, particularly methyl glucosides. The alkyl glucosides also improve the process for preparing the closed cell phenolic foam.
Abstract:
The present invention is directed to a method of preparing a phenolic foam that has cell walls which are substantially free of perforations. The method comprises using certain anhydrous aryl sulfonic acids as the foaming and curing catalysts. The useful anhydrous aryl sulfonic acids are those which have a pKa of less than about 2.0 and which change the compatibility of the phenolic resole with water. The preferred anhydrous aryl sulfonic acid is a combination of toluene sulfonic acid and xylene sulfonic acid. The invention is also directed to a phenolic foam having cell walls which are substantially free of perforations and to foamable phenolic resole compositions for preparing the phenolic foam.
Abstract:
Described are non-aqueous dispersions of photosensitive polymeric microparticles, comprising: a) an organic continuous phase comprising an organic solvent; and b) photosensitive polymeric microparticles dispersed in the organic continuous phase. The microparticles comprise an at least partially polymerized component having integral surface and interior domains, wherein the surface domain comprises a polymeric material that is solubilized by the organic solvent, the interior domain comprises a polymeric material that is insoluble in the organic solvent, and the surface domain and/or interior domain is photosensitive. Also described are methods of producing such non-aqueous dispersions, curable film-forming compositions containing them, and photosensitive coated substrates.
Abstract:
Described are non-aqueous dispersions of photosensitive polymeric microparticles, comprising: a) an organic continuous phase comprising an organic solvent; and b) photosensitive polymeric microparticles dispersed in the organic continuous phase. The microparticles comprise an at least partially polymerized component having integral surface and interior domains, wherein the surface domain comprises a polymeric material that is solubilized by the organic solvent, the interior domain comprises a polymeric material that is insoluble in the organic solvent, and the surface domain and/or interior domain is photosensitive. Also described are methods of producing such non-aqueous dispersions, curable film-forming compositions containing them, and photosensitive coated substrates.
Abstract:
Provided are curable film-forming compositions are provided including: (a) a binder of an alkoxysilane; (b) a metal oxide compound containing titanium, zirconium, cerium, niobium, tantalum, and/or tin; and (c) a polyglycidyl ether. Also provided are optical articles including a substrate and the curable film-forming composition superposed on a surface thereof.
Abstract:
Coated articles are provided comprising: (a) a substrate; (b) a porous sol-gel layer superimposed on at least one surface of the substrate; wherein the porous sol-gel layer comprises a hydrolyzed tetraalkoxysilane; and (c) a sealant layer superimposed on at least one surface of the porous sol-gel layer; wherein the sealant layer comprises an alkyltrihalosilane. The coated articles demonstrate superior abrasion resistance due to a glass-like layer formed from the combination of the porous sol-gel layer and sealant layer.
Abstract:
Provided are curable film-forming compositions are provided including: (a) a binder of an alkoxysilane; (b) a metal oxide compound containing titanium, zirconium, cerium, niobium, tantalum, and/or tin; and (c) a polyglycidyl ether. Also provided are optical articles including a substrate and the curable film-forming composition superposed on a surface thereof.
Abstract:
A process is provided for preparing a coated optical element. The process Includes: a) providing an optical element substrate; b) contacting the optical element with a pretreatment composition of an aqueous solution of hydrolyzed aminosilane; and c) applying a film-forming composition to the optical element of (b) to form a coating on the optical element, thereby yielding a coated optical element. The pretreatment composition may further include a substantially water-miscible solvent that is capable of swelling the substrate surface without causing haze or degradation of the substrate. The coated optical element demonstrates improved adhesion between the film-forming composition and the substrate compared to a substantially identical optical element that has not been contacted with the pretreatment composition of step b) prior to application of the film-forming composition.
Abstract:
A process is provided for preparing a coated optical element. The process Includes:a) providing an optical element substrate;b) contacting the optical element with a pretreatment composition of an aqueous solution of hydrolyzed aminosilane; andc) applying a film-forming composition to the optical element of (b) to form a coating on the optical element, thereby yielding a coated optical element. The pretreatment composition may further include a substantially water-miscible solvent that is capable of swelling the substrate surface without causing haze or degradation of the substrate. The coated optical element demonstrates improved adhesion between the film-forming composition and the substrate compared to a substantially identical optical element that has not been contacted with the pretreatment composition of step b) prior to application of the film-forming composition.
Abstract:
Described is a coating composition adapted to enhance the adhesion of a polymeric coating or film applied to a substrate. The coating composition is interposed between the substrate and the polymeric coating and comprises (a) at least one coupling agent, partial hydrolysates thereof or mixtures thereof in a concentration greater than 25 weight percent, based on the weight of the total composition, and (b) an adhesion enhancing amount of an epoxy-containing material having at least two epoxy groups. The coating composition is substantially free of photochromic materials and colloidal particles chosen from silica, alumina or mixtures thereof. Also described is a process for using the coating composition and articles coated with the composition and additional coatings and films which can be photochromic.