Abstract:
A micromechanical acceleration sensor is described which includes a substrate and a seismic mass which is movably situated with respect to the substrate in a detection direction. The micromechanical sensor includes at least one damping device for damping motions of the seismic mass perpendicular to the detection direction.
Abstract:
A micromechanical yaw-rate sensor comprising a first yaw-rate sensor element, which outputs a first sensor signal, which contains information about a rotation around a first rotational axis, a second yaw-rate sensor element, which outputs a second sensor signal, which contains information about a rotation around a second rotational axis, which is perpendicular to the first rotational axis, a drive, which drives the first yaw-rate sensor element, and a coupling link, which mechanically couples the first yaw-rate sensor element and the second yaw-rate sensor element to one another, so that driving of the first yaw-rate sensor element also causes driving of the second yaw-rate sensor element.
Abstract:
A micromechanical component includes a first electrode and a second electrode, the first electrode being moveable relative to the second electrode in a main direction of movement, and the first electrode and/or the second electrode being configured such that a movement of the first electrode parallel to the main direction of movement results in a modification of the average distance in a region of overlap of the projection of the first electrode with the projection of the second electrode, both perpendicular to the main direction of movement and in a main plane of extension.
Abstract:
A micromechanical rotation rate sensor has a seismic mass and driving devices which cause a driving vibration of the seismic mass in a first direction x. The rotation rate sensor has measuring devices which measure a deflection of the seismic mass in a second direction y, and generate a deflection signal. The deflection includes a measurement deflection caused by a Coriolis force and an interference deflection, the interference deflection being phase-shifted with respect to the measurement deflection by 90°. Compensation devices are provided at the seismic mass to reduce the interference deflection. Regulation devices are provided, to which the deflection signal is supplied as an input variable, which demodulate an interference deflection signal from the deflection signal, and which generate a compensation signal from the interference deflection signal, which is supplied to the compensation devices.
Abstract:
An expansion of the functional scope of a hybrid integrated component including an MEMS element, a cap for the micromechanical structure of the MEMS element, and an ASIC element having circuit components is provided. In this component, the circuit components of the ASIC element interact with the micromechanical structure of the MEMS element. The MEMS element is mounted on the ASIC element in such a way that the micromechanical structure of the MEMS element is situated in a cavity between the cap and the ASIC element. The ASIC element is additionally equipped with the circuit components of a magnetic sensor system. These circuit components are produced in or on the CMOS back-end stack of the ASIC element. The magnetic sensor system may thus be implemented without enlarging the chip area.
Abstract:
Hybrid integrated components including an MEMS element and an ASIC element are described, whose capacitor system allows both signal detection with comparatively high sensitivity and sensitive activation of the micromechanical structure of the MEMS element. The hybrid integrated component includes an MEMS element having a micromechanical structure which extends over the entire thickness of the MEMS substrate. At least one structural element of this micromechanical structure is deflectable and is operationally linked to at least one capacitor system, which includes at least one movable electrode and at least one stationary electrode. Furthermore, the component includes an ASIC element having at least one electrode of the capacitor system. The MEMS element is mounted on the ASIC element, so that there is a gap between the micromechanical structure and the surface of the ASIC element. According to the invention, at least one electrode of the capacitor system is separated from the layered structure of the ASIC element and instead mechanically and electrically connected to the deflectable structural element of the MEMS element, so that this electrode functions as a movable electrode of the capacitor system.
Abstract:
A micromechanical structure including a substrate having a main plane of extension, and including a first seismic mass, the first seismic mass including a grid structure made of intersecting first mass lines and the first seismic mass being flexibly secured with the aid of first bending-spring elements, and moreover, a first line width of the first mass lines parallel to the main plane of extension being between 20 and 50 percent of a further first line width of the first bending-spring elements parallel to the main plane of extension.
Abstract:
Micromechanical structure, in particular a yaw rate sensor having a substrate including a main plane of extent for detecting a first yaw rate about a first direction perpendicular to the main plane, a second yaw rate about a second direction parallel to the main plane, and a third yaw rate about a third direction parallel to the main plane and perpendicular to the second direction, includes a rotational oscillating element driven to rotational oscillation about a rotational axis parallel to the first direction. The micromechanical structure includes a yaw rate sensor configuration for detecting the first yaw rate that is completely surrounded by the rotational oscillating element in a plane parallel to the main plane. The micromechanical structure includes at least one first connection of the yaw rate sensor configuration on the rotational oscillating element, and at least one second connection of the yaw rate sensor configuration on the substrate.
Abstract:
A device and manufacturing method for a rotation sensor device includes a holding device, an oscillating mass, and a spring, via which the oscillating mass is connected to the holding device. The spring is designed so that the oscillating mass can be set into an oscillating movement around an oscillation axis with respect to the holding device with the aid of a drive. The steps include: producing a layer sequence having a first layer made of semiconductor material and/or metal and a second layer made of semiconductor material and/or a metal, a boundary surface of the first layer, at least partially being covered by an insulating layer; structuring the spring out of the first layer; and structuring at least one oscillating mass subunit of the oscillating mass, which can be set into the oscillating movement around the oscillation axis with the aid of the drive, out of the second layer.
Abstract:
A rate-of-rotation sensor having a substrate and a first Coriolis element are provided, an excitation arrangement being provided for the excitation of vibrations of the first Coriolis element in a first direction, a first detection arrangement being provided for detecting a first deflection of the first Coriolis element in a third direction running generally perpendicular to the first direction; characterized by the first Coriolis element being developed as balancing rocker.