Abstract:
A micromechanical structure includes: a substrate which has a main plane of extension; and a mass which is movable relative to the substrate, the movable mass being elastically suspended via at least one coupling spring. A first subregion of the movable mass is situated, at least partially, between the substrate and the coupling spring along a vertical direction which is essentially perpendicular to the main plane of extension.
Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, where the movable substructures are excitable into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, where deflections of the Coriolis elements induced by a Coriolis force are detectable, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A manufacturing method for hybrid integrated components having a very high degree of miniaturization is provided, which hybrid integrated components each have at least two MEMS elements each having at least one assigned ASIC element. Two MEMS/ASIC wafer stacks are initially created independently of one another in that two ASIC substrates are processed independently of one another; a semiconductor substrate is mounted on the processed surface of each of the two ASIC substrates, and a micromechanical structure is subsequently created in each of the two semiconductor substrates. The two MEMS/ASIC wafer stacks are mounted on top of each other, MEMS on MEMS. Only subsequently are the components separated.
Abstract:
A micromechanical acceleration sensor includes a seismic mass and a substrate that has a reference electrode. The seismic mass is deflectable in a direction perpendicular to the reference electrode, and the seismic mass has a flexible stop in the deflection direction. The flexible stop of the seismic mass includes an elastic layer.
Abstract:
A micromechanical component includes a substrate having a cavern structured into the same, an at least partially conductive diaphragm, which at least partially spans the cavern, and a counter electrode, which is situated on an outer side of the diaphragm oriented away from the substrate so that a clearance is present between the counter electrode and the at least partially conductive diaphragm, the at least partially conductive diaphragm being spanned onto or over at least one electrically insulating material which at least partially covers the functional top side of the substrate, and at least one pressure access being formed on the cavern so that the at least partially conductive diaphragm is bendable into the clearance when a gaseous medium flows from an outer surroundings of the micromechanical component into the cavern. Also described is a manufacturing method for a micromechanical component.
Abstract:
A yaw rate sensor includes a substrate having a substrate surface, a first movable element, which is disposed above the substrate surface and has a drive frame and a first detection mass, a first electrode, which is disposed at a distance underneath the first detection mass and connected to the substrate surface, and a second electrode which is disposed at a distance above the first detection mass and connected to the substrate surface. The drive frame is connected to the substrate via at least one drive spring, the detection mass is connected to the drive frame via at least one detection spring, and the first movable element is excitable to a drive oscillation parallel to the substrate surface, and the first detection mass is deflectable perpendicular to the substrate surface.
Abstract:
A micromechanical structure which includes a substrate having a main plane of extension, and a seismic mass which is movable relative to the substrate. The micromechanical structure includes a fixed electrode which is connected to the substrate, and a counterelectrode which is connected to the seismic mass. The fixed electrode has a first fixed electrode region and a second fixed electrode region which is connected in an electrically conductive manner to the first fixed electrode region. The counterelectrode is partially situated between the first and the second fixed electrode region, perpendicular to the main plane of extension.
Abstract:
A method for compensating for the quadrature of a micromechanical structure, the micromechanical structure having a substrate having a main extension plane, a seismic mass that is attached by spring elements to the substrate, and first and second compensation electrodes anchored to the substrate; in response to application of a first quadrature voltage between the first compensation electrode and the seismic mass, a first compensation force being produced on the seismic mass and, in response to application of a second quadrature voltage between the second compensation electrode and the seismic mass, a second compensation force being produced on the seismic mass and, in addition, the second quadrature voltage being adjusted as a function of the first quadrature voltage.
Abstract:
A micromechanical structure includes: a substrate; a seismic mass movable relative to the substrate along a first direction parallel to a main plane of extension of the substrate; a first electrode structure is connected to the substrate; and a second electrode structure connected to the substrate. The seismic mass includes a counterelectrode structure having finger electrodes situated between first finger electrodes of the first electrode structure and second finger electrodes of the second electrode structure, along the first direction. The first electrode structure is fastened to the substrate by a first anchoring element in a central region of the micromechanical structure, and the second electrode structure is anchored to the substrate by a second anchoring element situated in the central region.
Abstract:
A method for manufacturing a micromechanical structure, and a micromechanical structure. The micromechanical structure encompasses a first micromechanical functional layer, made of a first material, that comprises a buried conduit having a first end and a second end; a micromechanical sensor structure having a cap in a second micromechanical functional layer that is disposed above the first micromechanical functional layer; an edge region in the second micromechanical functional layer, such that the edge region surrounds the sensor structure and defines an inner side containing the sensor structure and an outer side facing away from the sensor structure; such that the first end is located on the outer side and the second end on the inner side.