摘要:
A method for manufacturing CMOS devices with fully silicided (FUSI) gates is described. A metallic gate electrode of an NMOS transistor and a metallic gate electrode of a pMOS transistor have a different work function. The work function of each transistor type is determined by selecting a thickness of a corresponding semiconductor gate electrode and a thermal budget of a first thermal step such that, during silicidation, different silicide phases are obtained on the nMOS and the pMOS transistors. The work function of each type of transistor can be adjusted by selectively doping the semiconductor material prior to the formation of the silicide.
摘要:
Disclosed are methods for manufacturing semiconductor devices and the devices thus obtained. In one embodiment, the method comprises obtaining a semiconductor substrate comprising a germanium region doped with n-type dopants at a first doping level and forming an interfacial silicon layer overlying the germanium region, where the interfacial silicon layer is doped with n-type dopants at a second doping level and has a thickness higher than a critical thickness of silicon on germanium, such that the interfacial layer is at least partially relaxed. The method further includes forming over the interfacial silicon layer a layer of material having an electrical resistivity smaller than 1×10−2 Ωcm, thereby forming an electrical contact between the germanium region and the layer of material, wherein the electrical contact has a specific contact resistivity below 10−4 Ωcm2.
摘要:
A semiconductor device is disclosed that comprises a fully silicided electrode formed of an alloy of a semiconductor material and a metal, a workfunction modulating element for modulating a workfunction of the alloy, and a dielectric in contact with the fully silicided electrode. At least a part of the dielectric which is in direct contact with the fully silicided electrode comprises a stopping material for substantially preventing the workfunction modulating element from implantation into and/or diffusing towards the dielectric. A method for forming such a semiconductor device is also disclosed.
摘要:
Low work function metals for use as gate electrode in nMOS devices are provided. The low work function metals include alloys of lanthanide(s), metal and semiconductor. In particular, an alloy of nickel-ytterbium (NiYb) is used to fully silicide (FUSI) a silicon gate. The resulting nickel-ytterbium-silicon gate electrode has a work function of about 4.22 eV.
摘要:
A method for manufacturing fully silicided (FUSI) gates and devices, in particular MOSFET devices, is described. The method includes deposition a metal layer over a semiconductor layer of a gate stack, providing a first thermal budget to allow a partial silicidation of the semiconductor layer, selectively removing a remaining unreacted metal layer, and providing a second thermal budget to allow a full silicidation of the semiconductor layer. As a result, the silicide phase can be effectively controlled.