摘要:
The disclosure provides a method for producing a stack of layers on a semiconductor substrate. The method includes producing a substrate a first conductive layer; and producing by ALD a sub-stack of layers on said conductive layer, at least one of said layers of the sub-stack being a TiO2 layer, the other layers of the sub-stack being layers of a dielectric material having a composition suitable to form a cubic perovskite phase upon crystallization of said sub-stack of layers. Crystallization is obtained via heat treatment. When used in a metal-insulator-metal capacitor, the stack of layers can provide improved characteristics as a consequence of the TiO2 layer being present in the sub-stack.
摘要:
Methods of manufacturing metal-insulator-metal capacitor structures, and the metal-insulator-metal capacitor structures obtained, are disclosed. In one embodiment, a method includes providing a substrate, forming on the substrate a first metal layer comprising a first metal, and using atomic layer deposition with an H2O oxidant to deposit on the first metal layer a protective layer comprising TiO2. The method further includes using atomic layer deposition with an O3 oxidant to deposit on the protective layer a dielectric layer of a dielectric material, and forming on the dielectric layer a second metal layer comprising a second metal. In another embodiment, a metal-insulator-metal capacitor includes a bottom electrode comprising a first metal, a protective layer deposited on the bottom electrode and comprising TiO2, a dielectric layer deposited on the protective layer and comprising a dielectric material, and a top electrode formed on the dielectric layer and comprising a second metal.
摘要:
A method is described for forming an at least partially silicided contact. In one embodiment, a hardmask is deposited over a contact. A coating of sacrificial material is then provided on top of the hardmask. The sacrificial material coating is etched back until the top of the contact is exposed. The contact is then opened, the sacrificial material is removed, and a silicidation of the contact is performed.
摘要:
The disclosure provides a method for producing a stack of layers on a semiconductor substrate. The method includes producing a substrate a first conductive layer; and producing by ALD a sub-stack of layers on said conductive layer, at least one of said layers of the sub-stack being a TiO2 layer, the other layers of the sub-stack being layers of a dielectric material having a composition suitable to form a cubic perovskite phase upon crystallization of said sub-stack of layers. Crystallization is obtained via heat treatment. When used in a metal-insulator-metal capacitor, the stack of layers can provide improved characteristics as a consequence of the TiO2 layer being present in the sub-stack.
摘要:
According to one embodiment of the invention, a method for nickel silicidation includes providing a substrate having a source region, a gate region, and a drain region, forming a source in the source region and a drain in the drain region, annealing the source and the drain, implanting, after the annealing the source and the drain, a heavy ion in the source region and the drain region, depositing a nickel layer in each of the source and drain regions, and heating the substrate to form a nickel silicide region in each of the source and drain regions by heating the substrate.
摘要:
Disclosed are methods for manufacturing semiconductor devices and the devices thus obtained. In one embodiment, the method comprises obtaining a semiconductor substrate comprising a germanium region doped with n-type dopants at a first doping level and forming an interfacial silicon layer overlying the germanium region, where the interfacial silicon layer is doped with n-type dopants at a second doping level and has a thickness higher than a critical thickness of silicon on germanium, such that the interfacial layer is at least partially relaxed. The method further includes forming over the interfacial silicon layer a layer of material having an electrical resistivity smaller than 1×10−2 Ωcm, thereby forming an electrical contact between the germanium region and the layer of material, wherein the electrical contact has a specific contact resistivity below 10−4 Ωcm2.
摘要:
A semiconductor device is disclosed that comprises a fully silicided electrode formed of an alloy of a semiconductor material and a metal, a workfunction modulating element for modulating a workfunction of the alloy, and a dielectric in contact with the fully silicided electrode. At least a part of the dielectric which is in direct contact with the fully silicided electrode comprises a stopping material for substantially preventing the workfunction modulating element from implantation into and/or diffusing towards the dielectric. A method for forming such a semiconductor device is also disclosed.
摘要:
Low work function metals for use as gate electrode in nMOS devices are provided. The low work function metals include alloys of lanthanide(s), metal and semiconductor. In particular, an alloy of nickel-ytterbium (NiYb) is used to fully silicide (FUSI) a silicon gate. The resulting nickel-ytterbium-silicon gate electrode has a work function of about 4.22 eV.