Abstract:
Provided is a high speed bit stream data conversion circuit that includes input ports to receive first bit streams at a first bit rate. Data conversion circuits receive the first bit streams and produce second bit stream(s), wherein the number and bit rate of the first and second bit stream(s) differ. Symmetrical pathways transport the first bit streams from the input ports to the data conversion circuits, wherein their transmission time(s) are substantially equal. A clock distribution circuit receives and symmetrically distributes a clock signal to data conversion circuits. A central trunk coupled to the clock port and located between a first pair of circuit pathways with paired branches that extend from the trunk and that couple to the data conversion circuits make up the clock distribution circuit. The distributed data clock signal latches data in data conversion circuits from the first to the second bit stream(s).
Abstract:
The present invention provides a high speed bit stream data conversion circuit that includes input ports to receive first bit streams at a first bit rate. Data conversion circuits receive the first bit streams and produce second bit stream(s), wherein the number and bit rate of the first and second bit stream(s) differ. Symmetrical pathways transport the first bit streams from the input ports to the data conversion circuits, wherein their transmission time(s) are substantially equal. A clock distribution circuit receives and symmetrically distributes a clock signal to data conversion circuits. A central trunk coupled to the clock port and located between a first pair of circuit pathways with paired branches that extend from the trunk and that couple to the data conversion circuits make up the clock distribution circuit. The distributed data clock signal latches data in data conversion circuits from the first to the second bit stream(s).
Abstract:
Various example embodiments are disclosed. According to an example embodiment, an apparatus may include a continuous time filter, a decision feedback equalizer, a clock and data recovery circuit, and an adaptation circuit. The adaptation circuit may be configured to adapt equalization according to at least one dithering algorithm by adjusting a delay adjust signal based on a mean square error of equalized data signals.
Abstract:
A high-speed bit stream data conversion circuit receives a first bit stream(s) and recovers a clock signal from the first bit stream(s). The data conversion circuit then produces a second bit stream(s) having a second lower bit rate. A control loop adjusts the phase relationship of the recovered clock signal to the first bit stream(s) to minimize data loss when the first bit stream(s) is sliced to produce the second bit stream(s). A reference clock signal produced within a clock circuit is divided to produce a reduced frequency reference clock, which is multiplexed with a test clock signal to produce an output signal. Differentially dividing the output signal produces a series of input signals for an interpolator that selectively weighs and sums the input signals as directed by the control loop to produce the recovered clock signal with the desired phase relationship relative to the first bit stream(s).
Abstract:
A method and apparatus for adaptively controlling a variable gain amplifier (VGA). The operation of the VGA is separated into a low gain mode and a high gain mode and the mode in which the VGA is currently operating in is adaptively sensed. A threshold voltage is compared to a control voltage of the VGA; if the VGA is currently operating in the low gain mode and the control voltage is higher than the threshold voltage, the VGA is switched from the low gain mode to the high gain mode; and if the VGA is currently operating in the high gain mode and the control voltage is lower than the threshold voltage, the VGA is switched from the high gain mode to the low gain mode.
Abstract:
A method and apparatus for adaptively controlling a variable gain amplifier (VGA). The operation of the VGA is separated into a low gain mode and a high gain mode and the mode in which the VGA is currently operating in is adaptively sensed. A threshold voltage is compared to a control voltage of the VGA; if the VGA is currently operating in the low gain mode and the control voltage is higher than the threshold voltage, the VGA is switched from the low gain mode to the high gain mode; and if the VGA is currently operating in the high gain mode and the control voltage is lower than the threshold voltage, the VGA is switched from the high gain mode to the low gain mode.
Abstract:
Various circuit techniques for implementing ultra high speed circuits use current-controlled CMOS (C3MOS) logic fabricated in conventional CMOS process technology. An entire family of logic elements including inverter/buffers, level shifters, NAND, NOR, XOR gates, latches, flip-flops and the like are implemented using C3MOS techniques. Optimum balance between power consumption and speed for each circuit application is achieve by combining high speed C3MOS logic with low power conventional CMOS logic. The combined C3MOS/CMOS logic allows greater integration of circuits such as high speed transceivers used in fiber optic communication systems. The C3MOS structure enables the use of a power supply voltage that may be larger than the voltage required by the CMOS fabrication process, further enhancing the performance of the circuit.
Abstract translation:用于实现超高速电路的各种电路技术使用以常规CMOS工艺技术制造的电流控制CMOS(C 3/4 MOS)逻辑。 包括逆变器/缓冲器,电平移位器,NAND,NOR,异或门,锁存器,触发器等的整个逻辑元件族都使用C 3 MOS技术实现。 通过将高速C“3”MOS逻辑与低功耗常规CMOS逻辑相结合,实现了每个电路应用的功耗和速度之间的最佳平衡。 组合的三极管/ CMOS逻辑允许诸如光纤通信系统中使用的高速收发器之类的电路的更大集成。 C 3 O 3 MOS结构能够使用可能大于CMOS制造工艺所需的电压的电源电压,进一步提高电路的性能。
Abstract:
The invention discloses a system for improving performance of the RF amplification stage of communication receivers by accounting for the signal environment of the RF amplifier. The linearity, gain and power supply voltage of the RF amplification stage of the communication receiver is adjusted to produce an optimal signal into the succeeding narrow-band amplification stage(s). The adjustment of the RF stage includes mechanisms such as adjusting the RF amplifier power supply level using a DC to DC converter. It also includes allowing distortion in the RF amplification stage if the distortion in the RF amplification stage does not affect the target signal. For example, if there were a strong signal that fell within the same band as the target signal, amplification would be allowed to be so high that it distorted the undesired signals, but not the tined signals. If the desired signal is the predominant signal, within the RF amplifier's band, then the amplifier gain may be increased only to the point where distortion is detected.
Abstract:
A switched-capacitor digital-to-analog converter circuit is disclosed. The switched-capacitor digital-to-analog converter circuit includes crossing switches for each capacitor branch, the crossing switches are used to eliminate cross interference between digital-to-analog converter blocks sharing the same reference voltages.
Abstract:
Techniques for generating bias voltages for a multi-cascode amplifier. In an aspect, a multi-cascode bias network is provided, each transistor in the bias network being a replica of a corresponding transistor in the multi-cascode amplifier, enabling accurate biasing of the transistors in the multi-cascode amplifier. In another aspect, a voltage supply for the multi-cascode amplifier is provided separately from a voltage supply for the replica bias network, to advantageously decouple variations in the amplifier voltage supply from the bias network voltage supply. In yet another aspect, the bias voltages of transistors in the multi-cascode amplifier may be configured by adjusting the impedance of resistive voltage dividers coupled to the transistor gate biases. As the gain of the amplifier depends on the bias voltages of the cascode amplifiers, the gain of the amplifier may be adjusted in this manner without introducing a variable gain element directly in the amplifier signal path.