摘要:
In the method for fabricating a semiconductor device of the present invention, a collector layer of a first conductivity type is formed in a region of a semiconductor substrate sandwiched by device isolation. A collector opening is formed through a first insulating layer deposited on the semiconductor substrate so that the range of the collector opening covers the collector layer and part of the device isolation. A semiconductor layer of a second conductivity type as an external base is formed on a portion of the semiconductor substrate located inside the collector opening, while junction leak prevention layers of the same conductivity type as the external base are formed in the semiconductor substrate. Thus, the active region is narrower than the collector opening reducing the transistor area, while minimizing junction leak.
摘要:
In the method for fabricating a semiconductor device of the present invention, a collector layer of a first conductivity type is formed in a region of a semiconductor substrate sandwiched by device isolation. A collector opening is formed through a first insulating layer deposited on the semiconductor substrate so that the range of the collector opening covers the collector layer and part of the device isolation. A semiconductor layer of a second conductivity type as an external base is formed on a portion of the semiconductor substrate located inside the collector opening, while junction leak prevention layers of the same conductivity type as the external base are formed in the semiconductor substrate. Thus, the active region is narrower than the collector opening reducing the transistor area, while minimizing junction leak.
摘要:
A method for measuring semiconductor constituent element content utilizes the steps of: obtaining a film thickness of an SiGeC layer formed on a semiconductor substrate by evaluation using spectroscopic ellipsometry; measuring infrared absorption spectrum of the SiGeC layer; and obtaining a C content of the SiGeC layer based on the film thickness and the infrared absorption spectrum of the SiGeC layer. The method: obtaining an apparent Ge content of the SiGeC layer by evaluation using spectroscopic ellipsometry; and obtaining an actual Ge content of the SiGeC layer based on the apparent Ge content and the C content. The constituent element content of the SiGeC layer can be easily and accurately measured according to the above-mentioned method.
摘要:
A method for fabricating a semiconductor crystal that has a first step for forming a semiconductor crystal layer (202) that contains carbon atoms and at least one kind of Group IV element other than carbon on a substrate (201), a second step for adding an impurity that is capable of reacting with oxygen to the semiconductor crystal layer (202), and a third step for removing the carbon atoms contained in the semiconductor crystal layer (202) by reacting the carbon with the impurity. This method makes it possible to fabricate a semiconductor crystal substrate in which the concentration of interstitial carbon atoms is satisfactorily reduced, thus resulting in excellent electrical properties when the substrate is applied to a semiconductor device.
摘要:
An initial estimated value of a process condition is set, and a structure of an element of a semiconductor device is estimated by a process simulator, after which an estimated value of a physical amount measurement value is calculated. Then, an actual measurement value of a physical amount of the element of the semiconductor device, which is obtained by an optical evaluation method, and a theoretical calculated value thereof are compared with each other, so as to obtain a probable structure of the measured semiconductor device element by using, for example, a simulated annealing, or the like. A process condition in a process for other semiconductor device elements can be corrected by using the results.
摘要:
After the surface of a Si substrate (1) has been pretreated, an SiGeC layer (2) is formed on the Si substrate (1) using an ultrahigh vacuum chemical vapor deposition (UHV-CVD) apparatus. During this process step, the growth temperature of the SiGeC layer (2) is set at 490° C. or less and Si2H6, GeH4 and SiH3CH3 are used as Si, Ge and C sources, respectively, whereby the SiGeC layer (2) with good crystallinity can be formed.
摘要翻译:在Si衬底(1)的表面经过预处理之后,使用超高真空化学气相沉积(UHV-CVD)装置在Si衬底(1)上形成SiGeC层(2)。 在该工艺步骤中,SiGeC层(2)的生长温度设定为490℃以下,Si 2 H 6,GeH 4,SiH 3 CH 3分别用作Si,Ge,C源,SiGeC层(2)与 可以形成良好的结晶度。
摘要:
A Si substrate 1 with a SiGeC crystal layer 8 deposited thereon is annealed to form an annealed SiGeC crystal layer 10 on the Si substrate 1. The annealed SiGeC crystal layer includes a matrix SiGeC crystal layer 7, which is lattice-relieved and hardly has dislocations, and Sic microcrystals 6 dispersed in the matrix SiGeC crystal layer 7. A Si crystal layer is then deposited on the annealed SiGeC crystal layer 10, to form a strained Si crystal layer 4 hardly having dislocations.
摘要:
A method for fabricating a semiconductor crystal that has a first step for forming a semiconductor crystal layer (202) that contains carbon atoms and at least one kind of Group IV element other than carbon on a substrate (201), a second step for adding an impurity that is capable of reacting with oxygen to the semiconductor crystal layer (202), and a third step for removing the carbon atoms contained in the semiconductor crystal layer (202) by reacting the carbon with the impurity. This method makes it possible to fabricate a semiconductor crystal substrate in which the concentration of interstitial carbon atoms is satisfactorily reduced, thus resulting in excellent electrical properties when the substrate is applied to a semiconductor device.
摘要:
A method of forming semiconductor crystal of the present invention comprises the steps of heating a Si substrate to clean a surface of the Si substrate, epitaxially growing Si crystal on the Si substrate inside a crystal growth chamber at a growth temperature lower than a substrate temperature of the Si substrate in the cleaning step and higher than a growth temperature at which SiGe crystal is epitaxially grown later, and epitaxially growing the SiGe crystal on the Si crystal.