Abstract:
An electronic component is described wherein the electronic component comprises a stack of electronic elements comprising a transient liquid phase sintering adhesive between and in electrical contact with each said first external termination of adjacent electronic elements
Abstract:
An electronic device is described wherein the electronic device comprises a substrate with a first conductive metal layer and a second conductive metal layer. A first microphonic noise reduction structure is in electrical contact with the first conductive metal layer wherein the first microphonic noise reduction layer comprises at least one of the group consisting of a compliant non-metallic layer and a shock absorbing conductor comprising offset mounting tabs with a space there between coupled with at least one stress relieving portion. An electronic component comprising a first external termination of a first polarity and a second external termination of a second polarity is integral to the electronic device and the first microphonic noise reduction structure and the first external termination are adhesively bonded by a transient liquid phase sintering adhesive.
Abstract:
An electronic device is described wherein the electronic device comprises a substrate with a first conductive metal layer and a second conductive metal layer. A first microphonic noise reduction structure is in electrical contact with the first conductive metal layer wherein the first microphonic noise reduction layer comprises at least one of the group consisting of a compliant non-metallic layer and a shock absorbing conductor comprising offset mounting tabs with a space there between coupled with at least one stress relieving portion. An electronic component comprising a first external termination of a first polarity and a second external termination of a second polarity is integral to the electronic device and the first microphonic noise reduction structure and the first external termination are adhesively bonded by a transient liquid phase sintering adhesive.
Abstract:
A stacked MLCC capacitor is provided wherein the capacitor stack comprises multilayered ceramic capacitors wherein each multilayered ceramic capacitor comprises first electrodes and second electrodes in an alternating stack with a dielectric between each first electrode and each adjacent second electrode. The first electrodes terminate at a first side and the second electrodes second side. A first transient liquid phase sintering conductive layer is the first side and in electrical contact with each first electrode; and a second transient liquid phase sintering conductive layer is on the second side and in electrical contact with each second electrode.
Abstract:
A method of forming a leadless stack comprising multiple components is provided. The method comprises forming an MLCC comprising a first capacitor external termination and a second capacitor external termination and forming an electronic element is formed comprising a first element external termination and a second element external termination. The MLCC and electronic component are are arranged in a stack with a TLPS bond between the first capacitor external termination and the first element external termination.
Abstract:
Provided is a high density multi-component package and a method of manufacturing a high density multi-component package. The high density multi-component package comprises at least two electronic components wherein each electronic component of the electronic components comprise a first external termination and a second external termination. At least one interposer is between the adjacent electronic components and attached to the interposer by an interconnect wherein the interposer is selected from an active interposer and a mechanical interposer. Adjacent electronic components are connected serially.
Abstract:
An improved capacitor utilizing stacked MLCC's is provided. The capacitor comprising at least one MLCC sandwiched between a first lead and a second lead. Each lead comprises at least one integral lead crimp.
Abstract:
An improved method for forming a capacitor is provided as is a capacitor, or electrical component, formed by the method. The method includes providing an aluminum containing anode with an aluminum oxide dielectric thereon; forming a cathode on a first portion of the aluminum oxide dielectric; bonding an anode lead to the aluminum anode on a second portion of the aluminum oxide by a transient liquid phase sintered conductive material thereby metallurgical bonding the aluminum anode to the anode lead; and bonding a cathode lead to said cathode.
Abstract:
An electronic component assembly is described which comprises a stack of electronic components wherein each electronic component comprises a face and external terminations. A component stability structure is attached to at least one face. A circuit board is provided wherein the circuit board comprises circuit traces arranged for electrical engagement with the external terminations. The component stability structure mechanically engages with the circuit board and inhibits the electronic device from moving relative to the circuit board.
Abstract:
An electronic component is described wherein the electronic component comprises a stack of electronic elements comprising a transient liquid phase sintering adhesive between and in electrical contact with each said first external termination of adjacent electronic elements