Abstract:
Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to direct pulses of light to an area on a wafer; a scanning subsystem configured to scan the pulses of light across the wafer; a collection subsystem configured to image pulses of light scattered from the area on the wafer to a sensor, wherein the sensor is configured to integrate a number of the pulses of scattered light that is fewer than a number of the pulses of scattered light that can be imaged on the entire area of the sensor, and wherein the sensor is configured to generate output responsive to the integrated pulses of scattered light; and a computer subsystem configured to detect defects on the wafer using the output generated by the sensor.
Abstract:
Methods and systems for enhancing the dynamic range of a high sensitivity inspection system are presented. The dynamic range of a high sensitivity inspection system is increased by directing a portion of the light collected from each pixel of the wafer inspection area toward an array of avalanche photodiodes (APDs) operating in Geiger mode and directing another portion of the light collected from each pixel of the wafer inspection area toward another array of photodetectors having a larger range. The array of APDs operating in Geiger mode is useful for inspection of surfaces that generate extremely low photon counts, while other photodetectors are useful for inspection of larger defects that generate larger numbers of scattered photons. In some embodiments, the detected optical field is split between two different detectors. In some other embodiments, a single detector includes both APDs operating in Geiger mode and other photodetectors having a larger range.
Abstract:
A method of providing high accuracy inspection or metrology in a bright-field differential interference contrast (BF-DIC) system is described. This method can include creating first and second beams from a first light beam. The first and second beams have round cross-sections, and form first partially overlapping scanning spots radially displaced on a substrate. Third and fourth beams are created from the first light beam or a second light beam. The third and fourth beams have elliptical cross-sections, and form second partially overlapping scanning spots tangentially displaced on the substrate. At least one portion of the substrate can be scanned using the first and second partially overlapping scanning spots as the substrate is rotated. Radial and tangential slopes can be determined using measurements obtained from the scanning using the first and second partially overlapping scanning spots. These slopes can be used to determine wafer shape or any localized topography feature.
Abstract:
Disclosed are methods and apparatus for inspecting an extreme ultraviolet (EUV) reticle is disclosed. An optical inspection tool is used to obtain a phase defect map for the EUV reticle before a pattern is formed on the EUV reticle, and the phase defect map identifies a position of each phase defect on the EUV reticle. After the pattern is formed on the EUV reticle, a charged particle tool is used to obtain an image of each reticle portion that is proximate to each position of each phase defect as identified in the phase defect map. The phase defect map and one or images of each reticle portion that is proximate to each position of each phase defect are displayed or stored so as to facilitate analysis of whether to repair or discard the EUV reticle.
Abstract:
A compact and versatile multi-spot inspection imaging system employs an objective for focusing an array of radiation beams to a surface and a second reflective or refractive objective having a large numerical aperture for collecting scattered radiation from the array of illuminated spots. The scattered radiation from each illuminated spot is focused to a corresponding optical fiber channel so that information about a scattering may be conveyed to a corresponding detector in a remote detector array for processing. In one embodiment, a one-dimensional array of illumination beams is directed at an oblique angle to the surface to illuminate a line of illuminated spots at an angle to the plane of incidence. Radiation scattered from the spots are collected along directions perpendicular to the line of spots or in a double dark field configuration.
Abstract:
A compact and versatile multi-spot inspection imaging system employs an objective for focusing an array of radiation beams to a surface and a second reflective or refractive objective having a large numerical aperture for collecting scattered radiation from the array of illuminated spots. The scattered radiation from each illuminated spot is focused to a corresponding optical fiber channel so that information about a scattering may be conveyed to a corresponding detector in a remote detector array for processing. In one embodiment, a one-dimensional array of illumination beams is directed at an oblique angle to the surface to illuminate a line of illuminated spots at an angle to the plane of incidence. Radiation scattered from the spots are collected along directions perpendicular to the line of spots or in a double dark field configuration.
Abstract:
Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to illuminate a set of spots on a wafer and a collection subsystem configured to collect light from the set of spots. The collection subsystem separately images the light collected from each of the individual spots onto only a corresponding first detector of a first detection subsystem. The collection subsystem also images the light collected from at least some of the individual spots onto a number of second detectors of a second detection subsystem that is less than a number of spots in the set. Output produced by the first and second detectors can be used to detect defects on the wafer.
Abstract:
The disclosure is directed to a system and method for inspecting a spinning sample by substantially simultaneously scanning multiple spots on a surface of the sample utilizing a plurality of illumination beams. Portions of illumination reflected, scattered, or radiated from respective spots on the surface of the sample are collected by at least one detector array. Information associated with at least one defect of the sample is determined by at least one computing system in communication with the detector array. According to various embodiments, at least one of scan pitch, spot size, spot separation, and spin rate is controlled to compensate pitch error due to tangential spot separation.
Abstract:
Disclosed are methods and apparatus for inspecting an extreme ultraviolet (EUV) reticle is disclosed. An inspection tool for detecting electromagnetic waveforms is used to obtain a phase defect map for the EUV reticle before a pattern is formed on the EUV reticle, and the phase defect map identifies a position of each phase defect on the EUV reticle. After the pattern is formed on the EUV reticle, a charged particle tool is used to obtain an image of each reticle portion that is proximate to each position of each phase defect as identified in the phase defect map. The phase defect map and one or images of each reticle portion that is proximate to each position of each phase defect are displayed or stored so as to facilitate analysis of whether to repair or discard the EUV reticle.
Abstract:
Optical inspection methods and apparatus for high-resolution photomasks using only a test image. A filter is applied to an image signal received from radiation that is transmitted by or reflected from a photomask having a test image. The filter may be implemented using programmed control to adjust and control filter conditions, illumination conditions, and magnification conditions.