Abstract:
A metrology performance analysis system includes a metrology tool including one or more detectors and a controller communicatively coupled to the one or more detectors. The controller is configured to receive one or more metrology data sets associated with a metrology target from the metrology tool in which the one or more metrology data sets include one or more measured metrology metrics and the one or more measured metrology metrics indicate deviations from nominal values. The controller is further configured to determine relationships between the deviations from the nominal values and one or more selected semiconductor process variations, and determine one or more root causes of the deviations from the nominal values based on the relationships between values of the one or more metrology metrics and the one or more selected semiconductor process variations.
Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.
Abstract:
A process control system may include a controller configured to receive after-development inspection (ADI) data after a lithography step for the current layer from an ADI tool, receive after etch inspection (AEI) overlay data after an exposure step of the current layer from an AEI tool, train a non-zero offset predictor with ADI data and AEI overlay data to predict a non-zero offset from input ADI data, generate values of the control parameters of the lithography tool using ADI data and non-zero offsets generated by the non-zero offset predictor, and provide the values of the control parameters to the lithography tool for fabricating the current layer on the at least one production sample.
Abstract:
A metrology performance analysis system includes a metrology tool including one or more detectors and a controller communicatively coupled to the one or more detectors. The controller is configured to receive one or more metrology data sets associated with a metrology target from the metrology tool in which the one or more metrology data sets include one or more measured metrology metrics and the one or more measured metrology metrics indicate deviations from nominal values. The controller is further configured to determine relationships between the deviations from the nominal values and one or more selected semiconductor process variations, and determine one or more root causes of the deviations from the nominal values based on the relationships between values of the one or more metrology metrics and the one or more selected semiconductor process variations.
Abstract:
A metrology system for determining overlay is disclosed. The system includes an optical assembly for capturing images of an overlay mark and a computer for analyzing the captured images to determine whether there is an overlay error. The mark comprises first and second regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a first direction, and include a periodic structure having coarsely segmented elements. The mark comprises third and fourth regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a second direction, and include a periodic structure having coarsely segmented elements. Working zones of the first and second regions are diagonally opposed and spatially offset relative to one another, and the working zones of the third and fourth regions are diagonally opposed and spatially offset relative to one another.
Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.
Abstract:
A metrology system for determining overlay is disclosed. The system includes an optical assembly for capturing images of an overlay mark and a computer for analyzing the captured images to determine whether there is an overlay error. The mark comprises first and second regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a first direction, and include a periodic structure having coarsely segmented elements. The mark comprises third and fourth regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a second direction, and include a periodic structure having coarsely segmented elements. Working zones of the first and second regions are diagonally opposed and spatially offset relative to one another, and the working zones of the third and fourth regions are diagonally opposed and spatially offset relative to one another.
Abstract:
The present disclosure is directed to a method of determining at least one correctable for a process tool. In an embodiment, the method includes the steps of: measuring one or more parameter values at one or more measurement locations of each field of a selection of measured fields of a wafer; estimating one or more parameter values for one or more locations of each field of a selection of unmeasured fields of the wafer; and determining at least one correctable for a process tool based upon the one or more parameter values measured at the one or more measurement locations of each field of the selection of measured fields of the wafer and the one or more parameter values estimated for the one or more locations of each field of the selection of unmeasured fields of the wafer.
Abstract:
A controller is configured to perform at least a first characterization process prior to at least one discrete backside film deposition process on a semiconductor wafer; perform at least an additional characterization process following the at least one discrete backside film deposition process; determine at least one of a film force or one or more in-plane displacements for at least one discrete backside film deposited on the semiconductor wafer via the at least one discrete backside film deposition process based on the at least the first characterization process and the at least the additional characterization process; and provide at least one of the film force or the one or more in-plane displacements to at least one process tool via at least one of a feed forward loop or a feedback loop to improve performance of one or more fabrication processes.
Abstract:
A system is disclosed. The system includes a tool cluster. The tool cluster includes a first deposition tool configured to deposit a first layer on a wafer. The tool cluster additionally includes an interferometer tool configured to obtain one or more measurements of the wafer. The tool cluster additionally includes a second deposition tool configured to deposit a second layer on the wafer. The tool cluster additionally includes a vacuum assembly. One or more correctables configured to adjust at least one of the first deposition tool or the second deposition tool are determined based on the one or more measurements. The one or more measurements are obtained between the deposition of the first layer and the deposition of the second layer without breaking the vacuum generated by the vacuum assembly.