Abstract:
The invention relates to a prepreg containing a reinforcing fiber, a sheet-like reinforcing fiber substrate including the reinforcing fiber, and a matrix resin, wherein the matrix resin is impregnated into the sheet-like reinforcing fiber substrate and also covers one surface of the sheet-like reinforcing fiber substrate, such that the matrix resin impregnation ratio is within a range of 35% to 95%. The invention also relates to a prepreg containing a reinforcing fiber substrate in the form of a sheet and formed from a reinforcing fiber woven fabric, and a matrix resin, wherein at least one surface of the reinforcing fiber substrate displays a sea-and-island-type pattern with resin-impregnated portions (island portions) and fiber portions (sea portions), such that a surface coverage of the matrix resin is within a range of 3% to 80%.
Abstract:
An epoxy resin composition suitably used for a prepreg which can complete curing in a short time even at a low temperature and secure a sufficient usable period under preservation at room temperature, in comparison with conventional epoxy resin compositions. An epoxy resin composition comprising at least one of an epoxy resin, an amine compound having at least one sulfur atom in the molecule thereof, and a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule thereof, and an amine compound having at least one sulfur atom in the molecule thereof, and a urea compound and a dicyandiamide, wherein each of the contents of the sulfur atom and the urea compound in the epoxy resin composition is respectively 0.2 to 7% by mass and 1 to 15% by mass.
Abstract:
An epoxy resin composition suitably used for a prepreg which can complete curing in a short time even at a low temperature and secure a sufficient usable period under preservation at room temperature, in comparison with conventional epoxy resin compositions. An epoxy resin composition comprising at least one of an epoxy resin, an amine compound having at least one sulfur atom in the molecule thereof, and a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule thereof, and an amine compound having at least one sulfur atom in the molecule thereof, and a urea compound and a dicyandiamide, wherein each of the contents of the sulfur atom and the urea compound in the epoxy resin composition is respectively 0.2 to 7% by mass and 1 to 15% by mass.
Abstract:
An epoxy resin composition suitably used for a prepreg which can complete curing in a short time even at a low temperature and secure a sufficient usable period under preservation at room temperature, in comparison with conventional epoxy resin compositions. An epoxy resin composition comprising at least one of an epoxy resin, an amine compound having at least one sulfur atom in the molecule thereof, and a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule thereof, and an amine compound having at least one sulfur atom in the molecule thereof, and a urea compound and a dicyandiamide, wherein each of the contents of the sulfur atom and the urea compound in the epoxy resin composition is respectively 0.2 to 7% by mass and 1 to 15% by mass.
Abstract:
A charged-particle beam system has a demagnifying lens for reducing the dimensions of an electron beam produced from an electron beam source, an objective lens for focusing the demagnified beam onto the surface of a target, a first deflector located before the demagnifying lens, a second deflector placed such that the deflection field produced by it is totally or partially superimposed on the objective lens field, and a third deflector located in a stage following the second deflector. An image of the light source is created by the demagnifying lens. An image of the light source image is formed on the target by the objective lens.
Abstract:
A preform can be molded by resin transfer molding and yields a composite material having excellent strength and excellent interlaminar debonding resistance. The preform, which is for producing a fiber-reinforced composite, comprises layers of laminated structure of a reinforcing material comprising reinforcement fibers and has, between these layers, a layer comprising a thermoplastic resin and having space so as not to inhibit a liquid resin from flowing therethrough. The preform is molded to yield a fiber-reinforced composite material.
Abstract:
An epoxy resin composition used as a matrix for a fiber-reinforced composite is disclosed, which comprises the following components:(A) a bifunctional epoxy resin;(B) at least one of a trifunctional epoxy resin and a tetrafunctional epoxy resin;(C) a dihydroxybiphenyl compound represented by the following general formula: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3 and R.sub.4, which may be the same or different, each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; and(D) an aromatic amine,wherein said components (A), (B), (C) and (D) are used in amounts satisfying the following conditions:1/0.1.gtoreq.a/b.gtoreq.1/1.210/1.gtoreq.(a+b)/c.gtoreq.1/11/0.8.gtoreq.(a+b-c)/d.gtoreq.1/1.5wherein a represents the molar number of epoxy groups in component (A), b represents the molar number of epoxy groups in component (B), c represents the molar number of phenolic OH groups in component (C) and d represents the molar number of NH groups in component (D).
Abstract:
An epoxy resin composition suitably used for a prepreg which can complete curing in a short time even at a low temperature and secure a sufficient usable period under preservation at room temperature, in comparison with conventional epoxy resin compositions. An epoxy resin composition comprising at least one of an epoxy resin, an amine compound having at least one sulfur atom in the molecule thereof, and a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule thereof, and an amine compound having at least one sulfur atom in the molecule thereof, and a urea compound and a dicyandiamide, wherein each of the contents of the sulfur atom and the urea compound in the epoxy resin composition is respectively 0.2 to 7% by mass and 1 to 15% by mass.
Abstract:
An epoxy resin composition suitably used for a prepreg which can complete curing in a short time even at a low temperature and secure a sufficient usable period under preservation at room temperature, in comparison with conventional epoxy resin compositions. An epoxy resin composition comprising at least one of an epoxy resin, an amine compound having at least one sulfur atom in the molecule thereof, and a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule thereof, and an amine compound having at least one sulfur atom in the molecule thereof, and a urea compound and a dicyandiamide, wherein each of the contents of the sulfur atom and the urea compound in the epoxy resin composition is respectively 0.2 to 7% by mass and 1 to 15% by mass.