摘要:
A method comprising, introducing a dopant type into a semiconductor layer to define a well region of the semiconductor layer, the well region comprising a channel region, and introducing a dopant type into the well region to define a multiple implant region substantially coinciding with the well region but excluding the channel region.
摘要:
The present invention provides a method of fabricating a metal oxide semiconductor field effect transistor. The method includes the steps of forming a source region on a silicon carbide layer and annealing the source region. A gate oxide layer is formed on the source region and the silicon carbide layer. The method further includes providing a gate electrode on the gate oxide layer and disposing a dielectric layer on the gate electrode and the gate oxide layer. The method further includes etching a portion of the dielectric layer and a portion of the gate oxide layer to form sidewalls on the gate electrode. A metal layer is disposed on the gate electrode, the sidewalls and the source region. The method further includes forming a gate contact and a source contact by subjecting the metal layer to a temperature of at least about 800° C. The gate contact and the source contact comprise a metal silicide. The distance between the gate contact and the source contact is less than about 0.6 μm. A vertical SiC MOSFET is also provided.
摘要:
A MOSFET device and a method for fabricating MOSFET devices are disclosed. The method includes providing a semiconductor device structure including a semiconductor device layer of a first conductivity type, and ion implanting a well structure of a second conductivity type in the semiconductor device layer, where the ion implanting includes providing a dopant concentration profile in a single mask implant sequence.
摘要:
A method for fabricating a SiC MOSFET is disclosed. The method includes growing a SiC epilayer over a substrate, planarizing the SiC epilayer to provide a planarized SiC epilayer, and forming a gate dielectric layer in contact with the planarized epilayer.
摘要:
An electrical device includes a blocking layer disposed on top of a substrate layer, wherein the blocking layer and the substrate layer each are wide bandgap semiconductors, and the blocking layer and the substrate layer form a buried junction in the electrical device. The device comprises a termination feature disposed at a surface of the blocking layer and a filled trench disposed proximate to the termination feature. The filled trench extends through the blocking layer to reach the substrate layer and is configured to direct an electrical potential associated with the buried junction toward the termination feature disposed near the surface of the blocking layer to terminate the buried junction.
摘要:
An electrical device includes a blocking layer disposed on top of a substrate layer, wherein the blocking layer and the substrate layer each are wide bandgap semiconductors, and the blocking layer and the substrate layer form a buried junction in the electrical device. The device comprises a termination feature disposed at a surface of the blocking layer and a filled trench disposed proximate to the termination feature. The filled trench extends through the blocking layer to reach the substrate layer and is configured to direct an electrical potential associated with the buried junction toward the termination feature disposed near the surface of the blocking layer to terminate the buried junction.
摘要:
A semiconductor device includes a substrate comprising a semiconductor material. The substrate has a surface that defines a surface normal direction and includes a P-N junction comprising an interface between a first region and a second region, where the first (second) region includes a first (second) dopant type, so as to have a first (second) conductivity type. The substrate includes a termination extension region disposed adjacent to the P-N junction and having an effective concentration of the second dopant type that is generally the effective concentration of the second dopant type in the second doped region. The substrate includes an adjust region disposed adjacent to the surface and between the surface and at least part of the termination extension region, where the effective concentration of the second dopant type generally decreases when moving from the termination extension region into the adjust region along the surface normal direction.
摘要:
There are provided semiconductor structures and devices comprising silicon carbide (SiC) and methods for making the same. The structures and devices comprise a base or shielding layer, channel and surface layer, all desirably formed via ion implantation. As a result, the structures and devices provided herein are hard, “normally off” devices, i.e., exhibiting threshold voltages of greater than about 3 volts.
摘要:
A method for removing defects at high pressure and high temperature (HP/HT) or for relieving strain in a non-diamond crystal commences by providing a crystal, which contains defects, and a pressure medium. The crystal and the pressure medium are disposed in a high pressure cell and placed in a high pressure apparatus, for processing under reaction conditions of sufficiently high pressure and high temperature for a time adequate for one or more of removing defects or relieving strain in the single crystal.
摘要:
A GaN crystal having up to about 5 mole percent of at least one of aluminum, indium, and combinations thereof. The GaN crystal has at least one grain having a diameter greater than 2 mm, a dislocation density less than about 104 cm−2, and is substantially free of tilt boundaries.
摘要翻译:具有至多约5摩尔%的铝,铟及其组合中的至少一种的GaN晶体。 GaN晶体具有至少一个直径大于2mm的晶粒,位错密度小于约10 -4 cm -2,并且基本上没有倾斜边界。