Abstract:
The present invention relates to a method for producing anhydrous galactose derived from seaweed, and provides an improved production yield rate of 3,6-anhydro-L-galactose by using microorganisms during acid treatment, neutralization, and purification after enzymatic hydrolysis, of agarose or agar.
Abstract:
The present invention relates to a novel use of β-1,3-1,6-endoglucanase producing oligosaccharides or glucose from β-glucan. More specifically, the present invention provides an effect of producing oligosaccharides or glucose of various degrees of polymerization in high yields by using a β-1,3-1,6-endoglucanase exhibiting β-1,3-endoglucanase and ββ-1,6-endoglucanase activity on β-glucan and exhibiting transglycosylation activity on laminarioligosaccharide.
Abstract:
The present invention relates to a method for pretreating lignocellulose by using an acid-base mixture catalyst. The method pretreats lignocellulose, by using a mixture catalyst of an acid and a base, so as not to pass through additional neutralization steps, and carries out pretreatment and simultaneous saccharification and fermentation through an identical single reactor process, thereby having an effect of producing ethanol in an excellent production yield from lignocellulosic biomass while simplifying the total process and reducing equipment costs and total processing costs.
Abstract:
The present invention relates to agarooligosaccharide hydrolase and a method for producing 3,6-anhydro-L-galactose and galactose from agarose by using the same. More specifically, the production yield of 3,6-anhydro-L-galactose and galactose from agarose, that is, the saccharification yield, is improved by using β-agarooligosaccharide hydrolase having an agarotriose hydrolytic activity.
Abstract:
The present invention relates to a method for preparing 3,6-anhydro-L-galactose, and use thereof. More specifically, 3,6-anhydro-L-galactose, which is a monosaccharide constituting agar, is produced in a high yield through chemical and enzymatic methods, and the physiological activities thereof such as whitening, moisturizing, antioxidant, anti-inflammatory activities and the like are displayed, thereby enabling industrial use thereof.
Abstract:
The present invention relates to a method for pretreating lignocellulose by using an acid-base mixture catalyst. The method pretreats lignocellulose, by using a mixture catalyst of an acid and a base, so as not to pass through additional neutralization steps, and carries out pretreatment and simultaneous saccharification and fermentation through an identical single reactor process, thereby having an effect of producing ethanol in an excellent production yield from lignocellulosic biomass while simplifying the total process and reducing equipment costs and total processing costs.
Abstract:
The present invention relates to a method for biologically producing, from seaweeds, 3,6-anhydro-L-galactitol (L-AHGol) which is a novel sugar alcohol, and agarobititol (ABol) which is in a disaccharide form having 3,6-anhydro-L-galactitol (L-AHGol) as a reducing end, by using a genetic engineering technique in GRAS strains.
Abstract:
The present invention relates to a method for producing marine algae-derived agarotriose, and a use thereof as a prebiotic. More specifically, the present invention investigates the characteristics of agarotriose as a prebiotic which is selectively metabolized by probiotic microorganisms, thereby enabling agarotriose to be used as an anti-cancer or anti-inflammatory agent in the fields of food and pharmaceuticals, and enabling agarotriose to be obtained at high yield through efficient purification with minimal loss after enzymatic hydrolysis of a red algae-derived polysaccharide without pre-treatment.
Abstract:
The present invention relates to a use of an agarobiose or agarooligosaccharides having anticariogenic activity. More specifically, a lower concentration of agarobiose or agarooligosaccharides than the concentration of xylitol suppresses the growth of Streptococcus mutans and suppresses acid production, and thus can be used for anti-cariogenic purposes.
Abstract:
The present invention relates to a method for producing marine algae-derived agarotriose, and a use thereof as a prebiotic. More specifically, the present invention investigates the characteristics of agarotriose as a prebiotic which is selectively metabolized by probiotic microorganisms, thereby enabling agarotriose to be used as an anti-cancer or anti-inflammatory agent in the fields of food and pharmaceuticals, and enabling agarotriose to be obtained at high yield through efficient purification with minimal loss after enzymatic hydrolysis of a red algae-derived polysaccharide without pre-treatment.