Abstract:
A flexible display substrate, a flexible organic light emitting display device, and a method of manufacturing the same are provided. The flexible display substrate comprises a flexible substrate including a display area and a non-display area extending from the display area, a first wire formed on the display area of the flexible substrate, and a second wire formed on the non-display area of the flexible substrate, wherein at least a part of the non-display area of the flexible substrate is curved in a bending direction, and the second wire formed on at least a part of the non-display area of the flexible substrate includes a first portion formed to extend in a first direction and a second portion formed to extend in a second direction.
Abstract:
A flexible display substrate, a flexible organic light emitting display device, and a method of manufacturing the same are provided. The flexible display substrate comprises a flexible substrate including a display area and a non-display area extending from the display area, a first wire formed on the display area of the flexible substrate, and a second wire formed on the non-display area of the flexible substrate, wherein at least a part of the non-display area of the flexible substrate is curved in a bending direction, and the second wire formed on at least a part of the non-display area of the flexible substrate includes a first portion formed to extend in a first direction and a second portion formed to extend in a second direction.
Abstract:
Provided is a configuration for a semiconductor layer and a line for reducing the segment length of the semiconductor layer with respect to the bending direction of the flexible substrate. Such a configuration reduces the probability of cracks occurring in the semiconductor layer of the thin-film transistor, thereby improving the stability and durability of the thin-film transistor employed in a curved or a flexible display device. The configuration includes a thin-film transistor (TF) on the flexible substrate. The TFT includes the semiconductor layer extending obliquely with respect to the direction of the line.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
A conductive trace design is described that minimizes the possibility of crack initiation and propagation in conductive traces during bending. The conductive trace design has a winding trace pattern that is more resistant to the formation of cracks at high stress points in the conductive traces. The conductive trace design includes a cap that helps ensure electrical connection of the conductive trace even though one or more cracks may begin to form in the conductive portion of the conductive trace.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
A thin film transistor, a method of manufacturing the thin film transistor, and a display device including the thin film transistor are provided. The thin film transistor comprises an oxide semiconductor layer, a gate electrode, a source electrode and a drain electrode formed on a substrate in a coplanar configuration. A first conductive member is in direct contact with the oxide semiconductor layer and in direct contact with the source electrode. A second conductive member is in direct contact with the oxide semiconductor layer and in direct contact with the drain electrode. The first conductive member and the second conductive member are arranged to decrease resistance between a channel region of the oxide semiconductor layer and the source and drain electrodes.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.