Abstract:
A method for receiving feedback information by a user equipment (UE) includes: receiving scheduling information from a base station through a first downlink component carrier linked with a first uplink component carrier; determining resources on a second uplink component carrier other than the first uplink component carrier using said scheduling information, wherein said scheduling information allows cross-carrier scheduling which schedules the resources on the second uplink component carrier; transmitting data to the base station through the determined resources on the second uplink component carrier; determining a PHICH (a Physical Hybrid ARQ Indicator Channel) resource to receive feedback information for the data transmitted on the second uplink component carrier, wherein the PHICH resource is predetermined as that of the first downlink component carrier in which the scheduling information was received; and receiving the feedback information from the base station through the determined PHICH resource.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting acknowledgement/negative ACK (ACK/NACK) in a wireless communication system which supports carrier aggregation, and to an apparatus for the method. A method in which a terminal transmits ACK/NACK in a wireless communication system that supports carrier aggregation comprises the following steps: receiving a physical downlink control channel (PDCCH); receiving a physical downlink shared channel (PDSCH) indicated by the PDCCH; and transmitting ACK/NACK for the PDSCH via a physical uplink control channel (PUCCH). A PUCCH format for transmitting ACK/NACK is selected by taking the number of aggregated carriers into account.
Abstract:
A method and apparatus for providing information indicating radio resources for multi-cell interference measurement at a BS so that a UE can more accurately measure interference are disclosed.
Abstract:
A method of mapping a physical resource to a logical resource in a wireless communication system is described. The method includes dividing a physical frequency band into at least one frequency partition. Each frequency partition is divided into a localized region and a distributed region in a frequency domain. The method further includes mapping the at least one frequency partition into at least one logical resource unit. The localized region is directly mapped into the logical resource unit and the distributed region is mapped into the logical resource unit after rearranging subcarriers within the distributed region.
Abstract:
The present invention relates to a method and apparatus which transmit/receive at least one demodulation reference signal by using a CDM group and/or a transmission rank of a user device that have been used to transmit the at least one demodulation reference signal for the user device, an OCC that has been used to spread the demodulation reference signal, etc. Also, the present invention relates to a method and apparatus which change an antenna port for transmitting the demodulation reference signal by using NDI for a disabled transmission block.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting acknowledgement/negative ACK (ACK/NACK) in a wireless communication system which supports carrier aggregation, and to an apparatus for the method. A method in which a terminal transmits ACK/NACK in a wireless communication system that supports carrier aggregation comprises the following steps: receiving a physical downlink control channel (PDCCH); receiving a physical downlink shared channel (PDSCH) indicated by the PDCCH; and transmitting ACK/NACK for the PDSCH via a physical uplink control channel (PUCCH). A PUCCH format for transmitting ACK/NACK is selected by taking the number of aggregated carriers into account.
Abstract:
A method for transmitting a signal for cell searching in a mobile communication system having a multi-cell environment includes transmitting the signal to one or more receiving party devices within a cell, wherein the signal is used for a synchronization of the one or more receiving party devices within the cell, the signal is defined by a combination of a first code sequence derived from a first index and a second code sequence derived from a second index, and an identity of the cell is used for defining the combination of the first code sequence and the second code sequence.
Abstract:
A method and a receiver are described for transmitting control information in a wireless communication system. The receiver is configured to receive a plurality of data units from a transmitter, determine acknowledgement/negative-acknowledgement (ACK/NACK) states for each of the data units; and transmit, to the transmitter, the ACK/NACK states in multiple ACK/NACK states or in a single ACK/NACK state in accordance with a predetermined condition.