摘要:
An integrated cable configured to communicate over much of its length using one or more optical fibers includes an electrical connector at least one end. The electrical connector at a first end of the integrated cable and an optoelectronic device coupled to or included in the other end of the integrated cable may utilize a bidirectional status link to transmit status data to each other. If the status data indicates that optical signals transmitted over the optical channels between the two devices are not potentially exposed to view, the two devices may operate above nominal eye safety limits. Otherwise, the two devices may operate at or below nominal eye safety limits. If the second optoelectronic device is not status-link enabled, the first optoelectronic device may operate at or below nominal eye safety limits.
摘要:
A robust and redundant status link is established by a first multi-channel optoelectronic device with a second multi-channel optoelectronic device in a multi-channel communication link. Transmitter bias currents are effectively modulated with a status link modulation signal representative of status data and subsequently modulated with primary data modulation signals. The resulting signals are transformed into optical signals and transmitted over the link as main communication links combined with a status link. At the second device, the optical signals are received and converted to electrical signals. The receipt of the optical signals creates multiple receiver bias currents, which may be monitored to detect the status link modulation signal. The second device may adjust various operating parameters in response to the information conveyed by the status link. For instance, devices can use status links to operate above nominal eye safety limits and/or to adjust transmit power to compensate for degradation effects.
摘要:
A multi-channel optoelectronic device is configured to establish a redundant status link with a remote device. The optoelectronic device can transmit N transmit optical signals to the remote device over a plurality of transmit channels and receive N receive optical signals from the remote device over a plurality of receive channels. The optoelectronic device includes one or more spare transmit and receive channels. When used with a remote device having spare transmit and receive channels, each device can establish a status link with the other and use the status link to switch out transmit and/or receive channels to identify and permanently switch out the worst transmit and/or receive channels. Alternately, the device can interoperate with a non-status-link enabled remote device by determining that the remote device is not status-link enabled, transitioning to a low transmit power mode, and transmitting and receiving over a plurality of default transmit and receive channels.
摘要:
A device having a plug that is configured to mechanically interface with a receptacle external to the device. The plug also has an electrical interface that electrically interfaces with the receptacle even though the external receptacle has a mechanical and electrical interface shaped to interface with an integrated cable that includes an optical communication mechanism for communicating over most of the length of the integrated cable, and even though the device itself has a full electrical communication channel communicatively coupling a data communication endpoint of the device with the electrical interface of the plug.
摘要:
An edge connector suitable for attachment with a printed circuit board. The edge connector comprises a body composed of a plastic resin, the body defining a first end that is configured to operably attach to a portion of a printed circuit board and a second end configured to operably connect to a slot in a host device and a plurality of conductive traces and contact pads defined on a portion of a surface of the body, the traces being configured to electrically connect with corresponding traces defined on the printed circuit board.
摘要:
The method and apparatus for monitoring a photo-detector generates a highly compliant mirror current across a broad range of photo-detector current levels. The apparatus for monitoring includes: a pair of bipolar transistors and a first non-linear isolation element. The pair of transistors are connected in a mirror configuration with a sense transistor one of the pair of transistors sensing a photo-detector current and with a mirror transistor one of the pair of transistors mirroring the photo-detector current with a mirror current. The first non-linear isolation element has at least two terminals a first of which couples to the collector of the mirror transistor. The first non-linear isolation element exhibits a non-linear voltage drop between the at least two terminals in response to varying levels of the mirror current to improve compliance between the mirror current and the detector current. Methods and means for monitoring a photo-detector are also disclosed.
摘要:
An optical receiver assembly that is configured to avoid the introduction of feedback in an electrical signal converted by the assembly is disclosed. In one embodiment, an optical receiver assembly is disclosed, comprising a capacitor, an optical detector provided with a power supply being mounted on a top electrode of the capacitor, and an amplifier mounted on the reference surface. The assembly further includes an isolator interposed between the reference surface and the capacitor, wherein the isolator includes a bottom layer of dielectric material that is affixed to a portion of the reference surface, and a metallic top plate that is electrically coupled both to a ground of the amplifier and to the capacitor. This configuration bootstraps the amplifier ground to the amplifier input via the photodiode top electrode of the capacitor to cancel out feedback signals present at the amplifier ground.
摘要:
An optical receiver assembly that is configured to avoid the introduction of feedback in an electrical signal converted by the assembly is disclosed. In one embodiment, an optical receiver assembly is disclosed, comprising a capacitor, an optical detector provided with a power supply being mounted on a top electrode of the capacitor, and an amplifier mounted on the reference surface. The assembly further includes an isolator interposed between the reference surface and the capacitor, wherein the isolator includes a bottom layer of dielectric material that is affixed to a portion of the reference surface, and a metallic top plate that is electrically coupled both to a ground of the amplifier and to the capacitor. This configuration bootstraps the amplifier ground to the amplifier input via the photodiode top electrode of the capacitor to cancel out feedback signals present at the amplifier ground.
摘要:
An embodiment disclosed herein relates to a communications module. The communications module includes a body composed of a plastic resin and a plurality of conductive traces and contact pads defined on a portion of a surface of the body. The module also includes at least one substantially vertical ridge defined on the body surface, and at least one pocket defined on the body suitable for receiving an electronic component. The communications module may also include a body composed of a plastic resin and conductive features defined on a surface of the body configured to render the communications module operable without implementing a printed circuit board as part of the body. Additional embodiments relate to systems and methods for attaching one or more optical transmit assemblies to the communications module and for electrically connecting conductive traces in a temporary fashion on the surface of the body of the communications module.
摘要:
Methods of manufacturing lead frame connectors for use in connecting optical sub-assemblies to printed circuit boards in optical transceiver modules are disclosed. The lead frame connectors are formed by first stamping a selected configuration of conductors in a conductive ribbon. Each of the conductors can then be secured in a fixed position with respect to each other. A casing having a first part and a second part can then be molded about the conductors such that each of the conductors forms an electrical contact restrained in a fixed position with respect to the first part and a contact point extending from the second part. The conductors can be bent into any desired position to allow the electrical contacts to be connected to the optical sub assembly and the contact points to be connected to the printed circuit board.