Abstract:
The light emitting diode packaging structure includes a flexible substrate, a first adhesive layer, micro light emitting elements, a conductive pad, a redistribution layer, and an electrode pad. The first adhesive layer is disposed on the flexible substrate. The micro light emitting elements are disposed on the first adhesive layer and have a first surface facing to the first adhesive layer and an opposing second surface. The micro light emitting elements include a red micro light emitting element, a blue micro light emitting element, and a green micro light emitting element. The conductive pad is disposed on the second surface of the micro light emitting element. The redistribution layer covers the micro light emitting elements and the conductive pad. The electrode pad is disposed on the redistribution layer and is electrically connected to the circuit layer. A thickness of the flexible substrate is less than 100 um.
Abstract:
Embodiments provide a micro light-emitting diode package structure and a method for forming the same. The micro light-emitting diode package structure includes a redistribution layer, a control device, micro light-emitting diodes, and a flexible material layer. The control device and the micro light-emitting diodes are disposed on and electrically connected to the redistribution layer. The flexible material layer covers the control device and the micro light-emitting diodes, wherein the micro light-emitting diodes are in contact with the flexible material layer.
Abstract:
A package structure, a display device, and manufacturing methods thereof are provided. A package structure includes a conductive element, a first dielectric layer, a redistribution layer, a second dielectric layer, a light-shielding layer, a conductive layer, and a light-emitting diode unit. The first dielectric layer is disposed on the conductive element. The redistribution layer is disposed on the first dielectric layer. The redistribution layer is electrically connected to the conductive element. The second dielectric layer is disposed on the first dielectric layer. The light-shielding layer is disposed on the second dielectric layer. The conductive layer is disposed on the redistribution layer and includes a first conductive portion with a light reflectivity of less than 30%. The light-emitting diode unit is disposed on the conductive layer.
Abstract:
A method for manufacturing a light emitting diode packaging structure includes the operations below. A flexible substrate having a first surface and a second surface is provided. A carrier substrate is formed on the first surface. An adhesive layer is formed on the second surface. A micro light emitting element is formed on the adhesive layer. The micro light emitting element has a conductive pad thereon opposite to the adhesive layer. A redistribution layer is formed and covers the micro light emitting element and the adhesive layer, wherein the redistribution layer includes a circuit layer electrically connecting to the conductive pad and an insulating layer covering the circuit layer. An electrode pad is formed on the redistribution layer and electrically connected to the circuit layer, wherein a total thickness of the flexible substrate, the adhesive layer, the redistribution layer, and the electrode pad is less than 200 um.
Abstract:
Disclosed is a light-emitting array structure having a substrate, a plurality of light-emitting pixel units, a plurality of first and second signal wires, and an encapsulating layer. The light-emitting pixel units are arranged in array on the substrate. Each light-emitting pixel unit includes a driving chip, a first flat layer, a first redistribution layer, a second flat layer, a second redistribution layer, and a light-emitting diode. Each first signal wire is electrically connected to a corresponding one of the first redistribution layers and extends in a first direction. The second signal wires extend in a level different from the first signal wires. Each second signal wire is electrically connected to a corresponding one of the second redistribution layers and extends in a second direction different from the first direction. The encapsulating layer covers the light-emitting pixel units, the first and second signal wires, and the substrate.
Abstract:
A light-emitting diode device includes a shell with a recess, wherein the shell does not contain metal oxide. A plurality of lead frames extends from the bottom of the recess to the outside of the shell. At least an UV light-emitting diode (LED) chip is disposed on the bottom of the recess and is electrically connected to the lead frames, wherein the UV LED chip has a wavelength range of 200 nm-400 nm. In addition, an encapsulation adhesive fills the recess to cover the UV LED chip.
Abstract:
A luminous element includes a heat dissipation plate, a body, a plurality of LED chips, a first connector and a second connector. The heat dissipation plate includes a die-bonding area and a heat dissipation area opposite to the die-bonding area. The body surrounds the heat dissipation plate, and includes a first body surface and a second body surface opposite to the first body surface. The first body surface includes a concave part exposing the die-bonding area. The second body surface includes an opening exposing the heat dissipation area. The LED chips are mounted on the die-bonding area. The first and the second connectors are disposed on the body, and they can be pluggably connected to an external power source or other connectors. The LED chips are connected to the electrical input terminals in the first and the second connectors.
Abstract:
A light emitting element package includes a first substrate, at least one light emitting element, an encapsulation layer, and a plurality of conductive pads. The first substrate has an upper surface and a lower surface opposite to each other, in which an edge of the lower surface has a notch. The at least one light emitting element is disposed on the upper surface of the first substrate, in which the light emitting element has a positive electrode and a negative electrode. The encapsulation layer covers the light emitting element. The plurality of conductive pads are disposed on the lower surface of the first substrate and electrically connected to the positive electrode and the negative electrode of the light emitting element, respectively.
Abstract:
A light-emitting diode (LED) display device, including a substrate, a de-mura region, a plurality of mounting blocks, a first LED chip array and a second LED chip array, is disclosed. The substrate includes a first region and a second region adjacent to each other. The de-mura region includes part of the first region and part of the second region. The mounting blocks are arranged in the first and the second region as an array, each mounting block including a first and a second mounting part. The first and the second mounting part are connected in parallel. The first LED chip array includes multiple first LED chips. The second LED chip array includes multiple second LED chips. Each first mounting part is arranged on the first side of the corresponding mounting block, and each second mounting part is arranged on the second side of the corresponding mounting block.
Abstract:
An inorganic light-emitting device is provided. The inorganic light-emitting device includes a carrier; a plurality of green chips, a plurality of red chips, and a plurality of blue chips periodically arranged on the carrier. The number of green chips is greater than the number of red chips, and the number of green chips is greater than the number of blue chips. A minimum distance Psub_g between adjacent ones of the green chips is smaller than a minimum distance Psub_r between adjacent ones of the red chips in a first direction D1, and the minimum distance Psub_g between adjacent ones of the green chips is smaller than a minimum distance Psub_b between adjacent ones of the blue chips in the first direction D1.