摘要:
A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle.
摘要:
A TEM sample holder is formed from at least one nano-manipulator probe tip and a TEM sample holder pre-form. The probe tip is permanently attached to the TEM sample-holder pre-form to create a TEM sample holder before attachment of a sample to the point of the probe tip inside a FIB. In the preferred embodiment the probe tip is attached to the TEM sample holder pre-form by applying pressure to the pre-form and the probe tip, so as to cause plastic flow of the pre-form material about the probe tip. The TEM sample holder may have smaller dimensions than the TEM sample holder pre-form; in this case the TEM sample holder is cut from the larger TEM sample holder pre-form, preferably in the same operation as attaching the probe tip.
摘要:
An apparatus for monitoring sample milling in a charged-particle instrument has a variable-tilt specimen holder (130) attached to the instrument tilt stage (120). The variable-tilt specimen holder (130) includes a first pivoting plate (260) having a slot (280) for holding a specimen (290) rotatably supported in the variable-tilt specimen holder (130). The first pivoting plate (260) has a range of rotation sufficient to move the preferred axis of thinning of the specimen (290) from a first position where the tilt stage (120) is placed at its maximum range of tilt and the angle between the preferred axis of thinning of the specimen (290) and the axis of the ion beam column (110) of the instrument is greater than zero, to a second position where the preferred axis for thinning of the specimen (290) is substantially parallel to the axis of the ion-beam column (110). A light detector (250) is positioned to intercept light passing through the specimen (290) as it is thinned by ion-beam milling. The intensity of the light passing through the specimen (290) may be compared to the intensity recorded for previous stages of milling to determine an endpoint for milling of the specimen.
摘要:
A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle.
摘要:
An apparatus for monitoring sample milling in a charged-particle instrument has a variable-tilt specimen holder attached to the instrument tilt stage. The variable-tilt specimen holder includes a first pivoting plate having a slot for holding a specimen rotatably supported in the specimen holder. The first pivoting plate has a range of rotation sufficient to move the axis of thinning of the specimen from a first position where the tilt stage is placed at its maximum range of tilt and the angle between the preferred axis of thinning of the specimen and the axis of the ion beam column of the instrument is greater than zero, to a second position where the axis for thinning of the specimen is substantially parallel to the axis of the ion-beam column. A light detector intercepts light passing through the specimen as it is thinned to determine an endpoint for milling of the specimen.
摘要:
A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle.
摘要:
A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle.
摘要:
A TEM sample holder is formed from at least one nano-manipulator probe tip and a TEM sample holder pre-form. The probe tip is permanently attached to the TEM sample-holder pre-form to create a TEM sample holder before attachment of a sample to the point of the probe tip inside a FIB. In the preferred embodiment the probe tip is attached to the TEM sample holder pre-form by applying pressure to the pre-form and the probe tip, so as to cause plastic flow of the pre-form material about the probe tip. The TEM sample holder may have smaller dimensions than the TEM sample holder pre-form; in this case the TEM sample holder is cut from the larger TEM sample holder pre-form, preferably in the same operation as attaching the probe tip.
摘要:
A precursor delivery system for an irradiation beam instrument having a vacuum chamber includes an injection tube for injecting gasses into the vacuum chamber of the instrument and a main gas line having an inlet and an outlet. The outlet is connected to the injection tube, and the inlet is connected to a sequential pair of valves connected to a carrier gas source. A crucible for holding precursor material is selectively connected to the main gas line at a location between the pair of valves and the injection tube. The source of carrier gas may be selectively connected to the inlet by sequential operation of the pair of carrier gas valves, so that pulses of carrier gas assist the flow of precursor material to the injection tube. Rapid purging of the system between precursors is enabled by a valve selectively connecting the main line to an envelope in communication with the instrument vacuum. Methods of CVD and etching using the system are also disclosed.
摘要:
A precursor delivery system for an irradiation beam instrument includes an injection tube for injecting gasses into the instrument vacuum chamber and a main gas line having an inlet and an outlet. The outlet is connected to the injection tube, and the inlet is connected to a sequential pair of valves connected to a carrier gas source. A crucible for holding precursor material is selectively connected to the main gas line at a location between the pair of valves and the injection tube. The source of carrier gas may be selectively connected to the inlet by sequential operation of the pair of carrier gas valves, so that pulses of carrier gas assist the flow of precursor material to the injection tube. Rapid purging of the system between precursors is enabled by a valve selectively connecting the main line to an envelope in communication with the instrument vacuum.