摘要:
The present invention is related to the obtaining of chimeric chains coding for proteins capable of inducing, in the recipient, a serotype-specific and protective humoral immune response against the infection by the Dengue virus, thus eliminating the effects of the serotype-nonespecific viral immunoenhancement that causes hemorrhagies and clinical complications described for this kind of pathology. These chimeric chains of nucleic acids are composed by the specific combination of fragments belonging to the gene of a mutated protein from Neisseria meningitidis with dehydrogenase activity and fragments that codify for a region of the envelope (E) protein from the Dengue virus which, when inserted to an expression vector, give rise to chimeric proteins with particular properties. The resultant chimeric molecules from this invention are applicable to the pharmaceutical industry for the obtaining of vaccine preparations and diagnostic means of high serotype-specificity to be used in humans.
摘要:
The present invention is related to the obtaining of chimeric chains coding for proteins capable of inducing, in the recipient, a serotype-specific and protective humoral immune response against the infection by the Dengue virus, thus eliminating the effects of the serotype-nonespecific viral immunoenhancement that causes hemorrhagies and clinical complications described for this kind of pathology. These chimeric chains of nucleic acids are composed by the specific combination of fragments belonging to the gene of a mutated protein from Neisseria meningitidis with dehydrogenase activity and fragments that codify for a region of the envelope (E) protein from the Dengue virus which, when inserted to an expression vector, give rise to chimeric proteins with particular properties. The resultant chimeric molecules from this invention are applicable to the pharmaceutical industry for the obtaining of vaccine preparations and diagnostic means of high serotype-specificity to be used in humans.
摘要:
The present invention is related to the obtaining of chimeric chains coding for proteins capable of inducing, in the recipient, a serotype-specific and protective humoral immune response against the infection by the Dengue virus, thus eliminating the effects of the serotype-nonespecific viral immunoenhancement that causes hemorrhagies and clinical complications described for this kind of pathology. These chimeric chains of nucleic acids are composed by the specific combination of fragments belonging to the gene of a mutated protein from Neisseria meningitidis with dehydrogenase activity and fragments that codify for a region of the envelope (E) protein from the Dengue virus which, when inserted to an expression vector, give rise to chimeric proteins with particular properties. The resultant chimeric molecules from this invention are applicable to the pharmaceutical industry for the obtaining of vaccine preparations and diagnostic means of high serotype-specificity to be used in humans.
摘要:
The present invention is related to the field of the pharmaceutical industry, and describes a conserved area on the surface of the E protein that can be used for the development of wide-spectrum antiviral molecules to be employed in the prophylaxis and/or treatment of infections due to Dengue Virus serotypes 1-4 and other flaviviruses. The invention also covers chimeric proteins to be used as vaccines or as a prophylactic or therapeutic treatment against the four serotypes of Dengue Virus and other flaviviruses.
摘要:
Use of chemical compounds obtained in silico for the preparation of pharmaceutical compositions to attenuate or inhibit Dengue virus infection. Particularly, through the interference or the modulation of several stages of viral replication cycle related with the entry of virus into host cells and the assembly of mature progeny virions. The invention also comprises the use of such pharmaceutical compositions for prophylactic and/or therapeutic treatment of infection caused by all four serotypes of Dengue virus and other flaviviruses.
摘要:
Use of chemical compounds obtained in silico for the preparation of pharmaceutical compositions to attenuate or inhibit Dengue virus infection. Particularly, through the interference or the modulation of several stages of viral replication cycle related with the entry of virus into host cells and the assembly of mature progeny virions. The invention also comprises the use of such pharmaceutical compositions for prophylactic and/or therapeutic treatment of infection caused by all four serotypes of Dengue virus and other flaviviruses.
摘要:
The present invention deals with recombinant polypeptide molecules related to antibodies, that specifically recognize the human Vascular Endothelial Growth Factor A (VEGF-A), and interfere with its in vitro stimulatory effects and pro-angiogenic activity in vivo. These recombinant polypeptide molecules affect proliferation of human endothelial cells in vitro, subcutaneous angiogenesis in mice induced by Matrigel pellets that contain VEGF-A and the growth of human tumors transplanted in nude athymic mice. Several of these moleculas prevent choroideal neovascularization in a non human primate experimental model. These molecules can be employed for passive immunotherapy in pathological entities which have in its base an abnormal increase in blood vessels, as: age-related macular degeneration (wet variant), cancer and its metastases, neovascular glaucoma, diabetic and newborn retinopathies, acute and chronic inflammatory processes, infectious diseases, autoimmune diseases, organ transplant rejection, hemangioma, angiofibroma, and others.
摘要:
The present invention is related to the obtaining of chimeric chains coding for proteins capable of inducing, in the recipient, a serotype-specific and protective humoral immune response against the infection by the Dengue virus, thus eliminating the effects of the serotype-nonespecific viral immunoenhancement that causes hemorrhagies and clinical complications described for this kind of pathology. These chimeric chains of nucleic acids are composed by the specific combination of fragments belonging to the gene of a mutated protein from Neisseria meningitidis with dehydrogenase activity and fragments that codify for a region of the envelope (E) protein from the Dengue virus which, when inserted to an expression vector, give rise to chimeric proteins with particular properties. The resultant chimeric molecules from this invention are applicable to the pharmaceutical industry for the obtaining of vaccine preparations and diagnostic means of high serotype-specificity to be used in humans.
摘要:
The present invention is related to the obtaining of chimeric chains coding for proteins capable of inducing, in the recipient, a serotype-specific and protective humoral immune response against the infection by the Dengue virus, thus eliminating the effects of the serotype-nonspecific viral immunoenhancement that causes hemorrhagies and clinical complications described for this kind of pathology. These chimeric chains of nucleic acids are composed by the specific combination of fragments belonging to the gene of a mutated protein from Neisseria meningitidis with dehydrogenase activity and fragments that codify for a region of the envelope (E) protein from the Dengue virus which, when inserted to an expression vector, give rise to chimeric proteins with particular properties. The resultant chimeric molecules from this invention are applicable to the pharmaceutical industry for the obtaining of vaccine preparations and diagnostic means of high serotype-specificity to be used in humans.
摘要:
The present invention is related to the obtaining of chimeric chains coding for proteins capable of inducing, in the recipient, a serotype-specific and protective humoral immune response against the infection by the Dengue virus, thus eliminating the effects of the serotype-nonespecific viral immunoenhancement that causes hemorrhagies and clinical complications described for this kind of pathology. These chimeric chains of nucleic acids are composed by the specific combination of fragments belonging to the gene of a mutated protein from Neisseria meningitidis with dehydrogenase activity and fragments that codify for a region of the envelope (E) protein from the Dengue virus which, when inserted to an expression vector, give rise to chimeric proteins with particular properties. The resultant chimeric molecules from this invention are applicable to the pharmaceutical industry for the obtaining of vaccine preparations and diagnostic means of high serotype-specificity to be used in humans.