Abstract:
An acoustic system can track gas emissions by exploiting the nostril-accessible nasal pathways of an animal. Actuators and microphones used in the apparatus can be similar to those currently found in cell phones, which in turn make the acoustic apparatus small and rugged. The nostril geometry can be mapped using sound waves, similar to the mapping done by an acoustic rhinometer. Where acoustic rhinometers assume a constant speed of sound to measure changes in geometry, acoustic approaches as disclosed herein can assume constant geometry to measure changes in the speed of sound. Approaches disclosed here are particularly useful with any gas, such as (for example) methane, hydrogen, helium, etc. that has a speed of sound higher than other typical gaseous components of exhaled air, such as nitrogen, carbon-dioxide, oxygen, etc.
Abstract:
A torsional actuator formed of a yarn of twisted shape memory material. The yarn has multiple strands of homogeneous shape memory material that have been homochirally twisted. For torsional actuation, a fractional portion of the yarn is heated such as by Joule heating. Various Joule heating mechanisms include passing an electrical current through an unwound segment of the yarn, or by coating a fractional portion of the length of each homogeneous strand with a coating material of higher electrical conductivity than the electrical conductivity of the shape memory material an passing current through the length of the yarn. The shape memory material may be a shape memory alloy such as a NiTi alloy.
Abstract:
A spectral imaging system includes an autocorrelator to generate different autocorrelations when the moving reflector in the autocorrelator is at different positions so as to reconstruct spectral images. The system also includes a position measurement system to measure the actual positions of the moving reflector when autocorrelations are taken. These actual locations, instead of the desired locations in conventional methods, are then used to reconstruct the spectral image. This approach can address the misalignment of the moving reflector from its desired location (due to external disturbances, slow actuator dynamics, and other factors) in conventional spectral imaging techniques and allow the development of high-resolution, high-stability, portable imaging spectrometers for the general public.
Abstract:
A needle-free adaptor for removing liquid from a vial comprises a cannula adapted to piece a septum of a vial, a plurality of legs surrounding the cannula to secure the adaptor to the vial when the cannula has pieced the septum, an elastomeric membrane having a normally closed pinhole orifice, and a conforming surface having an orifice connected to the cannula. The elastomeric membrane has a stable convex shape and is adapted to receive a nozzle of a needle-free device. Pressed against the elastomeric membrane, the nozzle deflects the elastomeric membrane from the convex shape to an unstable or pseudo-stable inverted position against the conforming surface. Buckling of the elastomeric membrane opens the pinhole orifice and enables fluid communication between the vial and the nozzle by interfacing the pinhole orifice with the orifice on the conforming surface.
Abstract:
An energy-storage device is formed from a first and a second yarn, each yarn including a plurality of nanowires including aluminum and/or a transition metal. An anode pad is in contact with the first yarn and a cathode pad is in contact with the second yarn. Alternatively, first and second metallic electrodes may be disposed substantially in parallel, with pluralities of nanowires including aluminum and/or a transition metal extending therefrom. In another embodiment, a supercapacitor may include a niobium yarn including a plurality of niobium nanowires. Each niobium nanowire may include at least (i) a first section comprising at least one of unoxidized niobium and niobium oxide; (ii) a second section comprises a niobium pentoxide layer; and (iii) a third section comprises a layer formed by coating the niobium nanowire in at least one of a conductive polymer and a liquid metal.
Abstract:
A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
Abstract:
A method and system for continuous measurement chromatograph involves stochastically modulating a system variable. The sample can be introduced into a chromatography column. The sample introduction can be modulated stochastically. The sample output from the column can be detected and processed with the stochastic input to provide a sample analysis.
Abstract:
A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
Abstract:
An energy-storage device is formed from a first and a second yarn, each yarn including a plurality of nanowires including aluminum and/or a transition metal. An anode pad is in contact with the first yarn and a cathode pad is in contact with the second yarn. Alternatively, first and second metallic electrodes may be disposed substantially in parallel, with pluralities of nanowires including aluminum and/or a transition metal extending therefrom. In another embodiment, a supercapacitor may include a niobium yarn including a plurality of niobium nanowires. Each niobium nanowire may include at least (i) a first section comprising at least one of unoxidized niobium and niobium oxide; (ii) a second section comprises a niobium pentoxide layer; and (iii) a third section comprises a layer formed by coating the niobium nanowire in at least one of a conductive polymer and a liquid metal.
Abstract:
A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.