摘要:
A magnetic scanner employs constant magnetic fields to mitigate zero field effects. The scanner includes an upper pole piece and a lower pole piece that generate an oscillatory time varying magnetic field across a path of an ion beam and deflect the ion beam in a scan direction. A set of entrance magnets are positioned about an entrance of the scanner and generate a constant entrance magnetic field across the path of the ion beam. A set of exit magnets are positioned about an exit of the scanner and generate a constant exit magnetic field across the path of the ion beam.
摘要:
An ion implantation system employs a mass analyzer for both mass analysis and angle correction. An ion source generates an ion beam along a beam path. A mass analyzer is located downstream of the ion source that performs mass analysis and angle correction on the ion beam. A resolving aperture within an aperture assembly is located downstream of the mass analyzer component and along the beam path. The resolving aperture has a size and shape according to a selected mass resolution and a beam envelope of the ion beam. An angle measurement system is located downstream of the resolving aperture and obtains an angle of incidence value of the ion beam. A control system derives a magnetic field adjustment for the mass analyzer according to the angle of incidence value of the ion beam from the angle measurement system.
摘要:
An ion implantation system that optimizes productivity that includes an ion generator configured to implant ions into a workpiece by scanning the ions along an axis in a first direction, a movable stage configured to move the workpiece in a second direction generally orthogonal to the first direction, an ion detection component configured to measure ion dosage at approximately an outer edge of the workpiece, a first direction driver that receives commands from the controller to move in a fast scan speed on wafer or a fast scan speed off wafer and a second direction driver that receives commands from the controller to move the workpiece movable stage in a slow scan speed
摘要:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
摘要:
Ion implantation systems and scanning systems are provided, in which a focus adjustment component is provided to adjust a focal property of an ion beam to diminish zero field effects of the scanner upon the ion beam. The focal property may be adjusted in order to improve the consistency of the beam profile scanned across the workpiece, or to improve the consistency of the ion implantation across the workpiece. Methods are disclosed for providing a scanned ion beam to a workpiece, comprising scanning the ion beam to produce a scanned ion beam, adjusting a focal property of an ion beam in relation to zero field effects of the scanner upon the ion beam, and directing the ion beam toward the workpiece.
摘要:
An ion beam uniformity control system, wherein the uniformity control system comprising a differential pumping chamber that encloses an array of individually controlled gas jets, wherein the gas pressure of the individually controlled gas jets are powered by a controller to change the fraction of charge exchanged ions, and wherein the charge exchange reactions between the gas and ions change the fraction of the ions with original charge state of a broad ion beam, wherein the charge exchanged portion of the broad ion beam is removed utilizing an deflector that generates a magnetic field, a Faraday cup profiler for measuring the broad ion beam profile; and adjusting the individually controlled gas jets based upon feedback provided to the controller to obtain the desired broad ion beam.
摘要:
One embodiment of the invention relates to a method for adjusting the ribbon beam flux of a scanned ion beam. In this method, an ion beam is scanned at a scan rate, and a plurality of dynamic beam profiles are measured as the ion beam is scanned. A corrected scan rate is calculated based on the plurality of measured dynamic beam profiles of the scanned beam. The ion beam is scanned at the corrected scan rate to produce a corrected ribbon ion beam. Other methods and systems are also disclosed.
摘要:
A magnetic scanner employs constant magnetic fields to mitigate zero field effects. The scanner includes an upper pole piece and a lower pole piece that generate an oscillatory time varying magnetic field across a path of an ion beam and deflect the ion beam in a scan direction. A set of entrance magnets are positioned about an entrance of the scanner and generate a constant entrance magnetic field across the path of the ion beam. A set of exit magnets are positioned about an exit of the scanner and generate a constant exit magnetic field across the path of the ion beam.
摘要:
An ion implantation system employs a mass analyzer for both mass analysis and angle correction. An ion source generates an ion beam along a beam path. A mass analyzer is located downstream of the ion source that performs mass analysis and angle correction on the ion beam. A resolving aperture within an aperture assembly is located downstream of the mass analyzer component and along the beam path. The resolving aperture has a size and shape according to a selected mass resolution and a beam envelope of the ion beam. An angle measurement system is located downstream of the resolving aperture and obtains an angle of incidence value of the ion beam. A control system derives a magnetic field adjustment for the mass analyzer according to the angle of incidence value of the ion beam from the angle measurement system.
摘要:
A scanning system including a scanning element, a beam profiler, analysis system, and a ZFE-limiting element, is disclosed. The scanning element is configured to scan an ion beam over an ion beam scan path. The beam profiler measures beam current of the ion beam as it is scanned over the ion beam scan path, and the analysis system analyzes the measured beam current to detect a ZFE condition. The ZFE-limiting element, which is upstream of the beam profiler and is coupled to the analysis system via a feedback path, is configured to selectively apply an electric field to the scanned ion beam based on whether the ZFE condition is detected. The selectively applied electric field induces a change in the scanned beam to limit the ZFE condition.