摘要:
An ion beam uniformity control system, wherein the uniformity control system comprising a differential pumping chamber that encloses an array of individually controlled gas jets, wherein the gas pressure of the individually controlled gas jets are powered by a controller to change the fraction of charge exchanged ions, and wherein the charge exchange reactions between the gas and ions change the fraction of the ions with original charge state of a broad ion beam, wherein the charge exchanged portion of the broad ion beam is removed utilizing an deflector that generates a magnetic field, a Faraday cup profiler for measuring the broad ion beam profile; and adjusting the individually controlled gas jets based upon feedback provided to the controller to obtain the desired broad ion beam.
摘要:
An ion beam uniformity control system, wherein the uniformity control system comprising a differential pumping chamber that encloses an array of individually controlled gas jets, wherein the gas pressure of the individually controlled gas jets are powered by a controller to change the fraction of charge exchanged ions, and wherein the charge exchange reactions between the gas and ions change the fraction of the ions with original charge state of a broad ion beam, wherein the charge exchanged portion of the broad ion beam is removed utilizing an deflector that generates a magnetic field, a Faraday cup profiler for measuring the broad ion beam profile; and adjusting the individually controlled gas jets based upon feedback provided to the controller to obtain the desired broad ion beam.
摘要:
Methods and apparatus for reducing energy contamination can be provided to a beam line assembly for ion implantation. Protrusions comprising surface areas and grooves therebetween can face neutral trajectories within a line of sight view from the workpiece within the beam line assembly. The protrusions can alter the course of the neutral trajectories away from the workpiece or cause alternate trajectories for further impacting before hitting a workpiece, and thereby, further reduce energy contamination for more sensitive implants.
摘要:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
摘要:
One embodiment relates to an ion implanter. The ion implanter includes an ion source to generate an ion beam, as well as a scanner to scan the ion beam across a surface of a workpiece along a first axis. The ion implanter also includes a deflection filter downstream of the scanner to ditheredly scan the ion beam across the surface of the workpiece along a second axis.
摘要:
An ion implantation system employs a mass analyzer for both mass analysis and angle correction. An ion source generates an ion beam along a beam path. A mass analyzer is located downstream of the ion source that performs mass analysis and angle correction on the ion beam. A resolving aperture within an aperture assembly is located downstream of the mass analyzer component and along the beam path. The resolving aperture has a size and shape according to a selected mass resolution and a beam envelope of the ion beam. An angle measurement system is located downstream of the resolving aperture and obtains an angle of incidence value of the ion beam. A control system derives a magnetic field adjustment for the mass analyzer according to the angle of incidence value of the ion beam from the angle measurement system.
摘要:
Beam current is adjusted during ion implantation by adjusting one or more parameters of an ion source. The ion beam is generated or provided by a non-arc discharge based ion source, such as an electron gun driven ion source or an RF driven ion source. A beam current adjustment amount is determined. Then, one or more parameters of the ion source are adjusted according to the determined beam current adjustment amount. The beam current is provided having a modulated beam current.
摘要:
One embodiment relates to an ion implanter. The ion implanter includes an ion source to generate an ion beam, as well as a scanner to scan the ion beam across a surface of a workpiece along a first axis. The ion implanter also includes a deflection filter downstream of the scanner to ditheredly scan the ion beam across the surface of the workpiece along a second axis.
摘要:
Some aspects of the present disclosure increase throughput beyond what has previously been achievable by changing the scan rate of a scanned ion beam before the entire cross-sectional area of the ion beam extends beyond an edge of a workpiece. In this manner, the techniques disclosed herein help provide greater throughput than what has previously been achievable. In addition, some embodiments can utilize a rectangular (or other non-circularly shaped) scan pattern that allows real-time beam flux measurements to be taken off-wafer during actual implantation. In these embodiments, the workpiece implantation routine can be changed in real-time to account for real-time changes in beam flux. In this manner, the techniques disclosed herein help provide improved throughput and more accurate dosing profiles for workpieces than previously achievable.
摘要:
A magnetic scanner employs constant magnetic fields to mitigate zero field effects. The scanner includes an upper pole piece and a lower pole piece that generate an oscillatory time varying magnetic field across a path of an ion beam and deflect the ion beam in a scan direction. A set of entrance magnets are positioned about an entrance of the scanner and generate a constant entrance magnetic field across the path of the ion beam. A set of exit magnets are positioned about an exit of the scanner and generate a constant exit magnetic field across the path of the ion beam.