Abstract:
The present invention relates to a system and method for the delivery of therapeutic agents, such as therapeutic drugs or genetic material, into the muscle or tissue that minimizes the loss of therapeutic agents due to contraction of the muscle. In one embodiment, an implant for delivering therapeutic agents into a muscle is provided, wherein the implant has at least one rod for insertion and delivery of therapeutic agents into the muscle and a patch that can be attached to the exterior surface of the muscle for preventing or minimizing therapeutic agent being expelled due to the contraction of the muscle, such as the beating of a heart muscle.
Abstract:
The present invention is directed to an expandable stent for implantation in a patient comprising a tubular metal body having open ends and a sidewall structure having openings therein and a coating disposed on a surface of said sidewall structure, said coating comprising a hydrophobic biostable elastomeric material and a biologically active material, wherein said coating continuously conforms to said structure in a manner that preserves said openings.
Abstract:
The present invention relates to novel biomaterials and methods of using these new biomaterials to facilitate wound healing. The novel biomaterial may be a biocompatible polymer to which at least one bioactive polymer is covalently bonded by graft polymerization, copolymerization or cross-linking. Alternatively, the novel biomaterial may be a polymer blend comprising at least one biocompatible polymer and at least one bioactive polymer.
Abstract:
A method of coating implantable open lattice metallic stent prosthesis is disclosed which includes sequentially applying a plurality of relatively thin outer layers of a coating composition comprising a solvent mixture of uncured polymeric silicone material and crosslinker and finely divided biologically active species, possibly of controlled average particle size, to form a coating on each stent surface. The coatings are cured in situ and the coated, cured prosthesis are sterilized in a step that includes preferred pretreatment with argon gas plasma and exposure to gamma radiation electron beam, ethylene oxide, steam.
Abstract:
A method for fixation of biological tissues, and bioprosthetic devices prepared by such method. The method generally comprises the steps of A) fixing the tissue, B) treating the tissue with a mixture of i) a denaturant, ii) a surfactant and iii) a crosslinking agent, C) fabricating or forming the bioprosthesis (e.g., forming the tissue and attaching any non-biological components thereto) and D) subjecting the bioprosthesis to terminal sterilization.
Abstract:
The present invention is directed to the formation of structures in situ through the principles of ligand binding. These structures are efficacious, for example, for tissue repair as well as for short- and long-term disease and condition management. According to one aspect of the invention, an injectable composition comprising self-assembling nanoparticles is provided. The self-assembling nanoparticles include: (a) a nanoparticle portion, (b) tissue binding ligands attached to the nanoparticle portion, which cause preferential binding and accumulation of the nanoparticles at one or more targeted tissue locations upon injection of the composition into the body, and (c) first and second interparticle binding ligands attached to the nanoparticle portion, which cause interparticle binding upon injection of the composition into the body.
Abstract:
The present invention relates to phase separated polymeric regions and to their use in conjunction with implantable or insertable medical devices. In some aspects of the invention, phase separated polymeric regions are provided that include (a) at least one biostable polymeric phase and (b) at least one biodisintegrable polymeric phase, which is of nanoscale dimensions and which undergoes biodisintegration such that the phase separated polymeric region becomes a nanoporous polymeric region in vivo. Other aspects of the invention are directed to methods of making implantable or insertable medical devices having at least one nanoporous polymeric region. These methods include (a) providing a phase separated polymeric region comprising a stable polymeric phase and a disintegrable polymeric phase of nanoscale dimensions, (b) selectively removing the disintegrable polymeric phase thereby producing the nanoporous polymeric region. In still other aspects, implantable or insertable medical devices are provided which have phase separated polymeric regions that include (a) at least one block copolymer having at least one biostable polymer block and at least one biodisintegrable polymer block and (b) at least one therapeutic agent which is released in vivo upon implantation or insertion of the medical device.
Abstract:
The present invention is directed to a method in which a supercritical fluid that comprises a carrier fluid and a biologically active agent is brought into contact with medical article that comprises a nanoporous surface region. A variety of medical articles may be used in the practice of the present invention, including implantable or insertable medical devices such as bone plates, joint prostheses, vascular grafts, stent grafts, stents, catheters, guide wires, balloons, filters, vascular patches, shunts, and coils, among others. The nanoporous surface region may be, for example, metallic, ceramic, or polymeric in nature. Examples of biologically active agents include antirestenotic agents and agents that promote tissue adhesion, among others. Carbon dioxide is one of many carrier fluids that may be employed.
Abstract:
A coating and method for a coating an implantable device or prostheses are disclosed. The coating includes an undercoat of polymeric material containing an amount of biologically active material, particularly heparin, dispersed therein. The coating further includes a topcoat which covers less than the entire surface of the undercoat and wherein the topcoat comprises a polymeric material substantially free of pores and porosigens. The polymeric material of the topcoat can be a biostable, biocompatible material which provides long term non-thrombogenicity to the device portion during and after release of the biologically active material.
Abstract:
Medical devices, such as stents, having a surface, a coating layer comprising a polymer disposed on at least a portion of the surface, and a composition comprising a biologically active material injected into or under the coating layer at one or more locations in the coating layer to form at least one pocket containing a biologically active material are disclosed. The composition may be injected using a nanometer- or micrometer-sized needle. Methods for making such medical devices are also disclosed. Using this method, a precise amount of the biologically active material may be disposed accurately and efficiently on the medical device at predefined locations.