Abstract:
A semiconductor device structure that comprises tiers of alternating dielectric levels and conductive levels and a carbon-doped silicon nitride over the tiers of the staircase structure. The carbon-doped silicon nitride excludes silicon carbon nitride. A method of forming the semiconductor device structure comprises forming stairs in a staircase structure comprising alternating dielectric levels and conductive levels. A carbon-doped silicon nitride is formed over the stairs, an oxide material is formed over the carbon-doped silicon nitride, and openings are formed in the oxide material. The openings extend to the carbon-doped silicon nitride. The carbon-doped silicon nitride is removed to extend the openings into the conductive levels of the staircase structure. Additional methods are disclosed.
Abstract:
A semiconductor device structure that comprises tiers of alternating dielectric levels and conductive levels and a carbon-doped silicon nitride over the tiers of the staircase structure. The carbon-doped silicon nitride excludes silicon carbon nitride. A method of forming the semiconductor device structure comprises forming stairs in a staircase structure comprising alternating dielectric levels and conductive levels. A carbon-doped silicon nitride is formed over the stairs, an oxide material is formed over the carbon-doped silicon nitride, and openings are formed in the oxide material. The openings extend to the carbon-doped silicon nitride. The carbon-doped silicon nitride is removed to extend the openings into the conductive levels of the staircase structure. Additional methods are disclosed.
Abstract:
A method of forming Si3Nx, where “x” is less than 4 and at least 3, comprises decomposing a Si-comprising precursor molecule into at least two decomposition species that are different from one another, at least one of the at least two different decomposition species comprising Si. An outer substrate surface is contacted with the at least two decomposition species. At least one of the decomposition species that comprises Si attaches to the outer substrate surface to comprise an attached species. The attached species is contacted with a N-comprising precursor that reacts with the attached species to form a reaction product comprising Si3Nx, where “x” is less than 4 and at least 3. Other embodiments are disclosed, including constructions made in accordance with method embodiments of the invention and constructions independent of method of manufacture.
Abstract:
Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
Abstract:
Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
Abstract:
A method comprises forming material to be etched over a substrate. An etch mask comprising a silicon nitride-comprising region is formed elevationally over the material. The etch mask comprises an elevationally-extending mask opening in the silicon nitride-comprising region that has a minimum horizontal open dimension that is greater in an elevationally-innermost portion of the region than in an elevationally-outermost portion of the region. The elevationally-outermost portion has a greater etch rate in at least one of HF and H3PO4 than does the elevationally-innermost portion. The etch mask is used as a mask while etching an elevationally-extending mask opening into the material. The silicon nitride-comprising region is exposed to at least one of HF and H3PO4 to increase the minimum horizontal open dimension in the elevationally-outermost portion to a greater degree than increase, if any, in the minimum horizontal open dimension in the elevationally-innermost portion. Other aspects and embodiments, including structure independent of method of manufacture, are disclosed.
Abstract:
A photomask includes a substrate having a device region and an adjacent edge region over transparent material. The device region includes spaced primary features of constant pitch at least adjacent the edge region. The edge region includes spaced sub-resolution assist features of the constant pitch of the spaced primary features at least adjacent the device region and which are off-phase by from about 30° to about 150° from +/−180°. Additional embodiments, including methods, are disclosed.
Abstract:
Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
Abstract:
A semiconductor device structure that comprises tiers of alternating dielectric levels and conductive levels and a carbon-doped silicon nitride over the tiers of the staircase structure. The carbon-doped silicon nitride excludes silicon carbon nitride. A method of forming the semiconductor device structure comprises forming stairs in a staircase structure comprising alternating dielectric levels and conductive levels. A carbon-doped silicon nitride is formed over the stairs, an oxide material is formed over the carbon-doped silicon nitride, and openings are formed in the oxide material. The openings extend to the carbon-doped silicon nitride. The carbon-doped silicon nitride is removed to extend the openings into the conductive levels of the staircase structure. Additional methods are disclosed.
Abstract:
Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.