Abstract:
A magnetic cell includes a free region between an intermediate oxide region (e.g., a tunnel barrier) and a secondary oxide region. Both oxide regions may be configured to induce magnetic anisotropy (“MA”) with the free region, enhancing the MA strength of the free region. A getter material proximate to the secondary oxide region is formulated and configured to remove oxygen from the secondary oxide region, reducing an oxygen concentration and an electrical resistance of the secondary oxide region. Thus, the secondary oxide region contributes only minimally to the electrical resistance of the cell core. Embodiments of the present disclosure therefore enable a high effective magnetoresistance, low resistance area product, and low programming voltage along with the enhanced MA strength. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
Abstract:
Spin transfer torque memory cells and methods of forming the same are described herein. As an example, spin transfer torque memory cells may include an amorphous material, a storage material formed on the amorphous material, wherein the storage material is substantially boron free, an interfacial perpendicular magnetic anisotropy material formed on the storage material, a reference material formed on the interfacial perpendicular magnetic anisotropy material, wherein the reference material is substantially boron free, a buffer material formed on the reference material and a pinning material formed on the buffer material.
Abstract:
A magnetic cell core includes a seed region with a plurality of magnetic regions and a plurality of nonmagnetic regions thereover. The seed region provides a template that enables formation of an overlying nonmagnetic region with a microstructure that enables formation of an overlying free region with a desired crystal structure. The free region is disposed between two nonmagnetic regions, which may both be configured to induce surface/interface magnetic anisotropy. The structure is therefore configured to have a high magnetic anisotropy strength, a high energy barrier ratio, high tunnel magnetoresistance, a low programming current, low cell-to-cell electrical resistance variation, and low cell-to-cell variation in magnetic properties. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
Abstract:
A transistor comprising a channel region on a material is disclosed. The channel region comprises a two-dimensional material comprising opposing sidewalls and oriented perpendicular to the material. A gate dielectric is on the two-dimensional material and gates are on the gate dielectric. Semiconductor devices and systems including at least one transistor are disclosed, as well as methods of forming a semiconductor device.
Abstract:
A transistor comprising a channel region on a material is disclosed. The channel region comprises a two-dimensional material comprising opposing sidewalls and oriented perpendicular to the material. A gate dielectric is on the two-dimensional material and gates are on the gate dielectric. Semiconductor devices and systems including at least one transistor are disclosed, as well as methods of forming a semiconductor device.
Abstract:
A transistor comprising a channel region on a material is disclosed. The channel region comprises a two-dimensional material comprising opposing sidewalls and oriented perpendicular to the material. A gate dielectric is on the two-dimensional material and gates are on the gate dielectric. Semiconductor devices and systems including at least one transistor are disclosed, as well as methods of forming a semiconductor device.
Abstract:
A magnetic cell core includes at least one stressor structure proximate to a magnetic region (e.g., a free region or a fixed region). The magnetic region may be formed of a magnetic material exhibiting magnetostriction. During switching, the stressor structure may be subjected to a programming current passing through the magnetic cell core. In response to the current, the stressor structure may alter in size. Due to the size change, the stressor structure may exert a stress upon the magnetic region and, thereby, alter its magnetic anisotropy. In some embodiments, the MA strength of the magnetic region may be lowered during switching so that a lower programming current may be used to switch the magnetic orientation of the free region. In some embodiments, multiple stressor structures may be included in the magnetic cell core. Methods of fabrication and operation and related device structures and systems are also disclosed.
Abstract:
A magnetic cell includes a free region between an intermediate oxide region (e.g., a tunnel barrier) and a secondary oxide region. Both oxide regions may be configured to induce magnetic anisotropy (“MA”) with the free region, enhancing the MA strength of the free region. A getter material proximate to the secondary oxide region is formulated and configured to remove oxygen from the secondary oxide region, reducing an oxygen concentration and an electrical resistance of the secondary oxide region. Thus, the secondary oxide region contributes only minimally to the electrical resistance of the cell core. Embodiments of the present disclosure therefore enable a high effective magnetoresistance, low resistance area product, and low programming voltage along with the enhanced MA strength. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
Abstract:
A magnetic tunnel junction comprises a conductive first magnetic electrode comprising magnetic recording material, a conductive second magnetic electrode spaced from the first electrode and comprising magnetic reference material, and a non-magnetic tunnel insulator material between the first and second electrodes. The magnetic reference material of the second electrode comprises a synthetic antiferromagnetic construction comprising two spaced magnetic regions one of which is closer to the tunnel insulator material than is the other. The one magnetic region comprises a polarizer region comprising CoxFeyBz where “x” is from 0 to 90, “y” is from 10 to 90, and “z” is from 10 to 50. The CoxFeyBz is directly against the tunnel insulator. A non-magnetic region comprising an Os-containing material is between the two spaced magnetic regions. The other magnetic region comprises a magnetic Co-containing material. Other embodiments are disclosed.
Abstract:
A magnetic cell includes a free region between an intermediate oxide region (e.g., a tunnel barrier) and a secondary oxide region. Both oxide regions may be configured to induce magnetic anisotropy (“MA”) with the free region, enhancing the MA strength of the free region. A getter material proximate to the secondary oxide region is formulated and configured to remove oxygen from the secondary oxide region, reducing an oxygen concentration and an electrical resistance of the secondary oxide region. Thus, the secondary oxide region contributes only minimally to the electrical resistance of the cell core. Embodiments of the present disclosure therefore enable a high effective magnetoresistance, low resistance area product, and low programming voltage along with the enhanced MA strength. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.