Abstract:
Since improving heat exchange between a gas-phase refrigerant and a liquid-phase refrigerant in a refrigeration system could instead result in a reduction in the efficiency of the whole refrigeration system, a heat exchange device (201) of the present invention includes: a refrigerant supply means (210) for supplying a first-temperature liquid-phase refrigerant (R11) and a second-temperature gas-phase refrigerant (R12) in one circulation system; a plurality of heat exchange means (220A, 220B) which are each configured so as to perform heat exchange between the liquid-phase refrigerant and the gas-phase refrigerant; and refrigerant circulation means (231, 232, 242) for circulating the gas-phase refrigerant (R12) in such a manner that the gas-phase refrigerant (R12) flows in parallel in the plurality of heat exchange means, and circulating the liquid-phase refrigerant (R11) in such a manner that the liquid-phase refrigerant (R11) flows in series in the plurality of heat exchange means.
Abstract:
A regulating-device-control system for controlling the operation of regulating devices for regulating the balance between electric power supply and demand includes: memory means storing, for each regulating device, correlation information expressing correlation of a state of the regulating device, an amount of power allotted to the regulating device, and an amount of variability in performance of the regulating device; determination means receiving state information that expresses the state of each regulating device and electric power information that expresses an amount of regulated power required for regulating the balance between electric power supply and demand, and, based on the correlation information, the state information, and the electric power information, determining the amount of electric power to be allotted to each regulating device such that the total value of the amount of variability in performance of each of the regulating devices is minimized under conditions in which the state of each regulating device is the state expressed by the state information and the total value of the amount of power to be allotted to the regulating devices is the amount of regulated power; and control means controlling the operation of each regulating device based on the determination result of the determination means.
Abstract:
A time range setting unit (110) sets an operation startable time point at which an operation can be started and a target operation end time point which is the latest time point among time points at which the operation is to be ended, with respect to each of plural power demanding objects (20). A necessary operation time setting unit (120) sets a necessary operation time with respect to each of the plural power demanding objects (20). A shape information acquisition unit (130) acquires shape information from a schedule management device (40). The shape information indicates an assumed shape of a transition line that represents transition in the amount of supplied power in a target period. A demand transition setting unit (140) sets power demand transition information indicating transition in an electric energy demand in the target period so that the necessary operation time is obtained and so that the transition in the electric energy demand generated by the plural power demanding objects (20) being operated accords with the assumed shape.
Abstract:
A battery control system, which controls operation of a plurality of batteries connected to an electric power system, comprises: detecting means that detects a delay period of each of the batteries which represents a period that has elapsed after the battery control system supplies the battery with an execution command for charging or discharging the battery until the battery operates according to the execution command; measuring means that measures a frequency rate-of-change of electric power of the electric power system; selecting means that selects adjustment batteries for adjusting the electric power of the electric power system from the batteries based on the frequency rate-of-change and the delay period of each of the batteries; and command means for supplying the execution command to the adjustment batteries.
Abstract:
A control device for controlling the operation of a supply and demand adjustment device that is connected to a power grid includes: detection means for detecting the state of the supply and demand adjustment device; communication means for transmitting the detection result of the detection means to an external device and receiving from the external device operation control information for controlling the operation of the supply and demand adjustment device; comprehension means for receiving and comprehending an adjustment power amount transmitted by bidirectional communication or one-way communication; and control means for, based on the adjustment power amount and the operation control information, controlling the operation of the supply and demand adjustment device.
Abstract:
A supply and demand adjustment system, that utilizes characteristics of a supply-and-demand adjustment apparatuses and precisely matches the total supply-and-demand adjustment amount with a required adjustment amount, when adjusting supply and demand, is provided. The supply and demand adjustment system that includes a central control apparatus and one or more supply-and-demand adjustment apparatuses, the central control apparatus including, supply-and-demand-adjustment-apparatus-state-collection unit that collects information with regard to a state of each supply-and-demand adjustment apparatus, allocation band calculation unit that calculates a frequency band and an intensity of a fluctuation of supply and demand adjustment to be allocated to the supply-and-demand adjustment apparatus based on the information of the state, and a supply-and-demand-adjustment-amount-calculation-unit that calculates a supply-and-demand adjustment amount for each supply-and-demand adjustment apparatus based on the frequency band and the intensity of the fluctuation of supply and demand adjustment to be allocated to the supply-and-demand adjustment apparatus.
Abstract:
The present invention provides a cooling system including a vaporizer (1) which is configured to absorb heat due to a liquid-phase refrigerant R being vaporized, a condenser (2) which is configured to discharge heat due to a refrigerant (R) in a gaseous phase state being liquefied, a resistance body (8) which is provided in a middle of a pipe passage (3) ranging from the vaporizer (1) to the condenser (2) and is configured to apply a resistance to the refrigerant (R), state detection sensors (9) which are provided in the pipe passage (3) on an upstream side and a downstream side of the resistance body (8) and are configured to detect a state of the refrigerant (R) flowing through each side inside the pipe passage (3), and a flow rate control means (C) which is configured to detect the presence of droplets in the refrigerant R flowing through the pipe passage (3) on the basis of a difference between detection values of the state detection sensors (9) which are detected on the upstream side and the downstream side of the resistance body (8), and controls a flow rate of the refrigerant (R) on the basis of detection results.
Abstract:
When an enclosed space is formed, by at least one of surfaces forming an exterior shape of a shielding member and an intake or exhaust surface among surfaces forming an exterior shape of heat-generating housings, in such a way that a taken-in airflow and an exhausted airflow of the heat-generating housings installed in at least two rows can be separated or substantially separated, a cooling system includes: a duct formed to be able to separate or substantially separate a first airflow and a second airflow being intake/exhaust of a specific heat-generating housing among the heat-generating housings, and heat-generating housings other than the specific heat-generating housing, respectively; and a cooling enhancement unit enhancing cooling for the specific heat-generating housing by acting on the first airflow, thereby avoiding occurrence of a hot spot due to a high-heat-generating housing, in a system building an air-conditioning environment such as aisle capping.
Abstract:
A battery control device controlling an operation of a battery connected to a power system includes detection means that detects battery-related information showing a state of the battery, or a state of an interconnection point of the power system and the battery, first communication means that transmits a detection result of the detection means to an external device, and executes reception processing to receive operation control information to control the operation of the battery from the external device at a predetermined time interval, and control means that executes battery operation control processing to control the operation of the battery based on a state of the power system and based on the operation control information received by the first communication means, at a time interval shorter than the predetermined time interval.
Abstract:
In power supply/demand adjustment processing for a DR (Demand Response) system, requests for the power supply/demand adjustment processing can be submitted to customers who maintain power supply/demand adjustment devices that can accommodate the power supply/demand adjustment processing. The control device (A) of the present invention is provided with: an acquisition unit (A1) that acquires processing information indicating power supply/demand adjustment processing that can be accommodated by an adjustment unit that manages, for each customer, adjustment amounts for one or more power supply/demand adjustment devices used in power adjustment of power supply/demand adjustment processing; and a reporting unit (A2) that, on the basis of information indicating characteristics relating to the power supply/demand adjustment processing and processing information, reports the actuation of power supply/demand adjustment processing to customers that are the object of the power supply/demand adjustment processing.