Abstract:
A medical lead with at least a distal portion thereof implantable in the brain of a patient is described, together with methods and systems for using the lead. The lead is provided with at least two sensing modalities (e.g., two or more sensing modalities for measurements of field potential measurements, neuronal single unit activity, neuronal multi unit activity, optical blood volume, optical blood oxygenation, voltammetry and rheoencephalography). Acquisition of measurements and the lead components and other components for accomplishing a measurement in each modality are also described as are various applications for the multimodal brain sensing lead.
Abstract:
An implantable neurostimulator system adapted to provide therapy for various neurological disorders is capable of varying therapy delivery strategies based on the context, physiological or otherwise, into which the therapy is to be delivered. Responsive and scheduled therapies can be varied depending on various sensor measurements, calculations, inferences, and device states (including elapsed times and times of day) to deliver an appropriate course of therapy under the circumstances.
Abstract:
A system and method for detecting and predicting neurological events with an implantable device uses a relatively low-power central processing unit in connection with signal processing circuitry to identify features (including half waves) and calculate window-based characteristics (including line lengths and areas under the curve of the waveform) in one or more electrographic signals received from a patient's brain. The features and window-based characteristics are employed within the framework of a programmable finite state machine to identify patterns and sequences in and across the electrographic signals, facilitating early and reliable detection and prediction of complex spatiotemporal neurological events in real time, and enabling responsive action by the implantable device.
Abstract:
A deep learning model and dimensionality reduction are applied to each of a plurality of records of physiological information to derive a plurality of feature vectors. A similarities algorithm is applied to the plurality of feature vectors to form a plurality of clusters, each including a set of feature vectors. An output comprising information that enables a display of one or more of the plurality of clusters is provided, and a mechanism for selecting at least one feature vector within a selected cluster of the plurality of clusters is enabled. Upon selection of a feature vector, an output comprising information that enables a display of the record of physiological information corresponding to the selected feature vector is provided, and a mechanism for assigning a label to the displayed record is enabled. The assigned label is then automatically assigned to the records corresponding to the remaining feature vectors in the selected cluster.
Abstract:
A server for updating a current version of a machine learning model resident in implanted medical devices includes an interface, a memory, and a processor. The interface is configured to receive a plurality of updated versions of the machine learning model from a plurality of remote sources remote from the server. The remote source may be, e.g., implanted medical devices and/or subservers. The processor is coupled to the memory and the interface and is configured to aggregate the plurality of updated versions to derive a server-updated version of the machine learning model, and to transmit the server-updated version of the machine learning model to one or more of the plurality of remote sources as a replacement for the current version of the machine learning model.
Abstract:
A medical lead with at least a distal portion thereof implantable in the brain of a patient is described, together with methods and systems for using the lead. The lead is provided with at least two sensing modalities (e.g., two or more sensing modalities for measurements of field potential measurements, neuronal single unit activity, neuronal multi unit activity, optical blood volume, optical blood oxygenation, voltammetry and rheoencephalography). Acquisition of measurements and the lead components and other components for accomplishing a measurement in each modality are also described as are various applications for the multimodal brain sensing lead.
Abstract:
A sensor of an implantable medical device senses electrical activity of the brain. A data analyzer of the device monitors an electrographic signal corresponding to the electrical activity of the sensed brain signal, and processes the brain signal to obtain a measure of phase-amplitude coupling. For a selected portion of the electrographic signal, the data analyzer detects first features and second features of the electrographic signal. The first features represent oscillations in a low frequency range, while the second features represent oscillations in a frequency range higher than the low frequency range. For example, the low frequency range may correspond to theta frequency and the higher frequency range may correspond to gamma frequency. The data analyzer determines a measure of phase-amplitude coupling between oscillations in the low frequency range and oscillations in the higher frequency range based on occurrences of second features which coincide with first features.
Abstract:
An implantable neurostimulator system adapted to provide therapy for various neurological disorders is capable of varying therapy delivery strategies based on the context, physiological or otherwise, into which the therapy is to be delivered. Responsive and scheduled therapies can be varied depending on various sensor measurements, calculations, inferences, and device states (including elapsed times and times of day) to deliver an appropriate course of therapy under the circumstances.
Abstract:
A medical lead with at least a distal portion thereof implantable in the brain of a patient is described, together with methods and systems for using the lead. The lead is provided with at least two sensing modalities (e.g., two or more sensing modalities for measurements of field potential measurements, neuronal single unit activity, neuronal multi unit activity, optical blood volume, optical blood oxygenation, voltammetry and rheoencephalography). Acquisition of measurements and the lead components and other components for accomplishing a measurement in each modality are also described as are various applications for the multimodal brain sensing lead.
Abstract:
A sensor of an implantable medical device senses electrical activity of the brain. A data analyzer of the device monitors an electrographic signal corresponding to the electrical activity of the sensed brain signal, and processes the brain signal to obtain a measure of phase-amplitude coupling. For a selected portion of the electrographic signal, the data analyzer detects first features and second features of the electrographic signal. The first features represent oscillations in a low frequency range, while the second features represent oscillations in a frequency range higher than the low frequency range. For example, the low frequency range may correspond to theta frequency and the higher frequency range may correspond to gamma frequency. The data analyzer determines a measure of phase-amplitude coupling between oscillations in the low frequency range and oscillations in the higher frequency range based on occurrences of second features which coincide with first features.