Interposer and chip-scale packaging for wafer-level camera

    公开(公告)号:US10217789B2

    公开(公告)日:2019-02-26

    申请号:US15091753

    申请日:2016-04-06

    Abstract: A chip-scale packaging process for wafer-level camera manufacture includes aligning an optics component wafer with an interposer wafer having a photoresist pattern that forms a plurality of transparent regions, bonding the aligned optics component wafer to the interposer wafer, and dicing the bonded optics component wafer and interposer wafer such that each optics component with interposer has a transparent region. The process further includes dicing an image sensor wafer, aligning the pixel array of each image sensor with the transparent region of a respective optics component with interposer, and bonding each image sensor to its respective optics component with interposer. Each interposer provides alignment between its respective optics component center and its respective pixel array center of the image sensor based on the respective transparent region. The interposer further provides a back focal length for focusing light from the optics component onto a top surface of the pixel array.

    Surface-mount device platform and assembly

    公开(公告)号:US11583171B2

    公开(公告)日:2023-02-21

    申请号:US16548753

    申请日:2019-08-22

    Abstract: A surface-mount device platform includes a surface-mounting region, a connection region, and a bendable region therebetween, each including a respective part of a base substrate. The base substrate includes electrically-conductive layers interspersed with electrically-insulating build-up layers. Each of the surface-mounting region, the connection region, and the bendable region spans between a bottom substrate-surface and a top substrate-surface of the base substrate. The surface-mounting region further includes an electrically-insulating first top rigid-layer, and device bond-pads exposed on a top surface of the first top rigid-layer facing away from the top substrate-surface in the surface-mounting region. The connection region further includes an electrically-insulating second top rigid-layer and a plurality of connector bond-pads each exposed on a top surface of the second top rigid-layer facing away from the top substrate-surface in the connection region, and electrically connected to a respective device bond-pad via at least one of the electrically conductive layers.

    Lens barrel, lens-barrel wafer, and associated method

    公开(公告)号:US10459189B2

    公开(公告)日:2019-10-29

    申请号:US15286300

    申请日:2016-10-05

    Abstract: A method for forming a lens barrel includes aligning each of a plurality of upper apertures of an upper wafer to (i) a respective one of a plurality of middle apertures of a middle wafer and (ii) a respective one of a plurality of lower apertures of a lower wafer. The middle wafer is between the upper wafer and the lower wafer. The method also includes bonding the middle wafer to the upper wafer to form a lens barrel wafer. Each triad of co-aligned upper, middle, and lower apertures forms a wafer aperture spanning between a top surface of the upper wafer and a bottom surface of the lower wafer. Each upper aperture has a respective upper width and each middle aperture has a respective middle width less than the respective upper width to form, in each triad, a ledge for supporting a lens in the upper aperture.

    LIGHT-FIELD CAMERA AND METHOD USING WAFER-LEVEL INTEGRATION PROCESS

    公开(公告)号:US20200322507A1

    公开(公告)日:2020-10-08

    申请号:US16377391

    申请日:2019-04-08

    Abstract: A camera module has light-field camera(s) and high resolution camera(s), the light-field camera(s) have multiple-lens arrays above an image sensor. The light-field camera(s) have a lens element at a same level as a lens element of the high resolution camera, the lens elements bearing apertures. The multiple-lens array of the light-field camera is above the image sensor at a same level as a flat transparent plate of the high resolution camera. The cameras lens cubes are made simultaneously by bonding molded lens plates and spacer plates, the lens plates and spacer plates including an upper lens plate having upper light-field camera lens elements and upper high resolution camera lens elements with applied apertures, multiple spacer plates, a microlens plate bearing an array of microlenses in the light-field cameras, the microlens plate being flat and transparent in areas of the high resolution camera.

    Interposer And Chip-Scale Packaging For Wafer-Level Camera

    公开(公告)号:US20190181179A1

    公开(公告)日:2019-06-13

    申请号:US16267370

    申请日:2019-02-04

    Abstract: A chip-scale packaging process for wafer-level camera manufacture includes aligning an optics component wafer with an interposer wafer having a photoresist pattern that forms a plurality of transparent regions, bonding the aligned optics component wafer to the interposer wafer, and dicing the bonded optics component wafer and interposer wafer such that each optics component with interposer has a transparent region. The process further includes dicing an image sensor wafer, aligning the pixel array of each image sensor with the transparent region of a respective optics component with interposer, and bonding each image sensor to its respective optics component with interposer. Each interposer provides alignment between its respective optics component center and its respective pixel array center of the image sensor based on the respective transparent region. The interposer further provides a back focal length for focusing light from the optics component onto a top surface of the pixel array.

    Trenched-bonding-dam device and manufacturing method for same

    公开(公告)号:US10157943B2

    公开(公告)日:2018-12-18

    申请号:US15004584

    申请日:2016-01-22

    Abstract: Trenched-bonding-dam devices and corresponding methods of manufacture are provided. A trenched-bonding-dam device includes a bonding dam structure positioned upon a top surface of a substrate. The bonding dam structure has a bottom surface attached to a top surface of the substrate, an inner dam surrounded by an outer dam, and a trench between the inner and outer dams. The device may further include an optics system including a lens and an adhesive positioned within a bonding region between a bottom surface of the optics system and a top surface of at least one of the inner and outer dams. The trench may be dimensioned to receive a portion of the excess adhesive flowing laterally out of the bonding region during bonding of the substrate to the optics system, laterally confining the excess adhesive and reducing lateral bleeding of the adhesive.

Patent Agency Ranking