Abstract:
A silicon carbide semiconductor device includes a transistor region, a diode region, a gate line region, and a gate pad region. The gate pad region and the gate line region are each disposed to be sandwiched between the diode region and the diode region, and a gate electrode on the gate pad region and the gate line region is formed on an insulating film formed on an epitaxial layer. Thus, breakdown of the insulating film in the gate region can be prevented without causing deterioration in quality of the gate insulating film, upon switching and avalanche breakdown.
Abstract:
A semiconductor element includes: a semiconductor substrate of a first conduction type; a silicon carbide semiconductor layer of the first conduction type disposed above a principal surface of the semiconductor substrate; a terminal edge region of a second conduction type disposed in the silicon carbide semiconductor layer; an insulating film; a first electrode disposed on the silicon carbide semiconductor layer; and a seal ring surrounding the first electrode. The terminal edge region is disposed to surround part of a surface of the silicon carbide semiconductor layer when viewed in a normal direction of the principal surface of the semiconductor substrate. The terminal edge region includes a guard ring region of the second conduction type, and a terminal edge injection region of the second conduction type. The seal ring is formed on the terminal edge injection region through an opening disposed on the insulating film.
Abstract:
A semiconductor device includes first and second second-conductivity-type region groups containing multiple second-conductivity-type regions that are disposed on a first silicon carbide semiconductor layer of a first conductivity type, arrayed in parallel following one direction with a space between each other, and first and second electrodes disposed on the first silicon carbide semiconductor layer and forming a Schottky junction with the first silicon carbide semiconductor layer. The first electrode covers a position where a distance from adjacent first and second second-conductivity-type regions included in a first second-conductivity-type region group, and a distance from a third second-conductivity-type region included in a second second-conductivity-type region group and adjacent to the first and second second-conductivity-type regions, are equal. A Schottky barrier between the first electrode and the first silicon carbide semiconductor layer is larger than a Schottky barrier between the second electrode and the first silicon carbide semiconductor layer.
Abstract:
A semiconductor device includes a silicon carbide semiconductor substrate, a silicon carbide layer, a switching element section, and an overvoltage detection element section whose area is smaller than that of the switching element section. The switching element section includes a first electrode pad, a first terminal section surrounding the first electrode pad and provided in the silicon carbide layer, and a first insulating film covering the first terminal section. The overvoltage detection element section includes a second electrode pad, a second terminal section surrounding the second electrode pad and provided in the silicon carbide layer, and a second insulating film covering the second terminal section and being in contact with the silicon carbide layer. A breakdown field strength of at least part of a portion of the second insulating film being in contact with the silicon carbide layer is lower than that of the first insulating film.
Abstract:
A semiconductor device includes a silicon carbide semiconductor layer, a termination region disposed in the silicon carbide semiconductor layer, an insulating film covering part of the termination region, an electrode disposed on the silicon carbide semiconductor layer, a seal ring disposed on remaining part of the termination region and surrounding the electrode, and a passivation film covering the insulating film and the seal ring. Assuming that an outer peripheral end of the seal ring and an outer peripheral end of the passivation film have distance L2 at a side of the silicon carbide semiconductor layer, the outer peripheral end of the seal ring and the outer peripheral end of the passivation film have distance L1 at a corner, and the outer peripheral end of the passivation film at the corner has radius of curvature R1, L1>L2 and R1≥L2 are satisfied.
Abstract:
The silicon carbide semiconductor device includes a plurality of unit cells each having an MISFET structure and provided on a silicon carbide semiconductor substrate. A gate upper electrode disposed adjacent to the plurality of unit cells includes a gate pad and gate global wires. When viewed in plan, gate electrodes do not overlap with the gate pad.
Abstract:
A semiconductor device according to an aspect of the present disclosure includes a semiconductor substrate having a first conductivity type and having a principal surface and a back surface, a silicon carbide semiconductor layer having the first conductivity type and disposed on the principal surface, barrier regions having a second conductivity type and disposed within the silicon carbide semiconductor layer, an edge termination region having the second conductivity type and disposed within the silicon carbide semiconductor layer, the edge termination region enclosing the barrier regions, a first electrode disposed on the silicon carbide semiconductor layer, and a second electrode disposed on the back surface, wherein each of the barrier regions has a polygonal boundary with the silicon carbide semiconductor layer, and each of sides of the polygonal boundary has an angle of 0° to 5° inclusive relative to direction of crystal orientations of the semiconductor substrate.
Abstract:
A semiconductor device includes a gate pad, a first source pad and a second source pad insulated from each other, a drain pad, a main region, and a sense region for detecting a forward current and a reverse current. The main region and the sense region each include a plurality of unit cells which are in parallel connection, the number of unit cells in the sense region being smaller than the number of unit cells in the main region. A source electrode of any unit cell in the main region is connected to the first source pad, and a source electrode of any unit cell in the sense region is connected to the second source pad.
Abstract:
A semiconductor device includes a silicon carbide semiconductor substrate, a silicon carbide layer, a switching element section, and an overvoltage detection element section whose area is smaller than that of the switching element section. The switching element section includes a first electrode pad, a first terminal section surrounding the first electrode pad and provided in the silicon carbide layer, and a first insulating film covering the first terminal section. The overvoltage detection element section includes a second electrode pad, a second terminal section surrounding the second electrode pad and provided in the silicon carbide layer, and a second insulating film covering the second terminal section and being in contact with the silicon carbide layer. A breakdown field strength of at least part of a portion of the second insulating film being in contact with the silicon carbide layer is lower than that of the first insulating film.